$$
-L 16-q-p^{1}
$$

Point manes \rightarrow extended objects
Center of mas of in objects consoleredos point masses.

$$
\vec{r}_{c M}=\frac{\sum m_{i} \vec{T}_{i}}{\sum m_{i}} ; \quad \sum m_{i}=M
$$

$$
\begin{aligned}
M \vec{r}_{c M}=\sum m_{i} \vec{r}_{i} \\
\frac{d}{d t} \rightarrow M \vec{v}_{c M}=\sum m_{i} \vec{v}_{i} \\
\frac{d}{d t} \rightarrow M \vec{a}_{c M}=\sum m_{i} \vec{a}_{i}=\sum \vec{F}_{i}
\end{aligned}
$$

Rochet propulsion:

Mincludes the man of the fuel Move plus the man of the fuel $\mathrm{H}_{2}+\mathrm{O}_{2}$
$d M v_{e}$ fuel ejeded
$\sum m_{i} \vec{v}_{i}=\vec{\theta}$ if in center man v_{e} is constant

$$
\begin{gathered}
-v_{e} d M+M d v=\theta \\
v_{e} \frac{d M}{M}=\left.d v \quad\right|_{i} ^{f} \\
-v_{e} \frac{|d M|}{M}=d v \quad \text { interpret } d M \\
-v_{e} \ln \frac{M_{f}}{M_{i}}=v_{f}-v_{i} \\
v_{e} \ln \frac{M_{i}}{M_{f}}=v_{f}-v_{i} \quad \frac{M_{i}}{M_{f}}=6
\end{gathered}
$$

$$
\begin{aligned}
& \ln 6=1.8 \\
& \begin{aligned}
& v_{e}: 1.8=\Delta v \\
& \frac{1}{\&} M v^{2}=\frac{3}{q} R T ; \quad \begin{aligned}
M \text { water } & =18 \mathrm{~g} \\
& =0.018 \mathrm{hg}
\end{aligned} \\
& T \approx 2000 \mathrm{~K}
\end{aligned} \\
& \begin{aligned}
v^{2} & =\frac{3 R T}{M} ; \bar{v} \approx \sqrt{\frac{3 R T}{M}} \\
& =\sqrt{\frac{3.8 .314 \cdot 2000}{0.018}} \approx 1.7 \frac{\mathrm{~km}}{\mathrm{~s}}
\end{aligned} \\
& \Delta v \approx 1.7 \cdot 10 \cdot 1.8=3000 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$$
-p^{4}-
$$

Roldatival dynamics

$$
\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau=r \cdot F \cdot \sin \theta=r_{\perp} F=\tau F_{T}
$$ with reppect to a center of rotaction.

$$
\begin{aligned}
& \tau_{1}+\tau_{2}+\tau_{3}= \\
= & r_{1} F_{1}+r_{2} F_{2}+r_{3} F_{3} \quad F=m a \\
= & r_{1} m_{1} a_{1}+r_{2} m_{2} a_{2}+r_{3} m_{3} a_{3} \\
= & r_{1} m_{1} \alpha \tau_{1}+r_{2} m_{2} \alpha \tau_{2}+r_{3} m_{3} \alpha r_{3} \\
& =\left(\sum m_{i} r_{i}^{2}\right) \alpha=I_{A} \cdot \alpha
\end{aligned}
$$

