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34 Electromagnetic Waves from Maxwell’s Equations . 
For homework, see website: 1,5,7,11,13,17,19,27,29 
Summary and abstract: 
The instantaneous energy density u(t) in an electromagnetic field is given by the sum of 
the energy densities we derived for a capacitor and for a coil. The electric and magnetic 
fields are in general functions of all space coordinates and time. 
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34.1 Derivation of the electromagnetic wave equations 
For an electromagnetic wave there are no currents and no charges and we get the 
following Maxwell equations for the vacuum: 

(34.2)
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We see, that any time changing electric field is surrounded by a time changing magnetic 
field, any time changing magnetic field is surrounded by a time changing electric field. 
This implies that any accelerated charge is surrounded by both electric and magnetic 
fields which both change in time. 
These combined fields give rise to an electromagnetic wave, which consists of time 
changing magnetic and electric fields, perpendicular to each other and traveling in a 
direction perpendicular to both at the speed of light c. We shall see how this follows 
from Maxwell’s equations. 
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We are going to show that both the electric field and the magnetic field satisfy a wave 
equation just like the wave equation for a wave on a string. There, we derived the 
linear wave equation for a one dimensional wave on a string: y(x,t) is the linear wave-
function which obeys the  (partial differential) wave equation: 
 

(34.3) 
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One way to write its solution is in terms of an exponential complex function. You will 
recognize the same exponent i tω which we also had for ac-currents and voltages. 

(34.4) ( )
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In contrast to a linear wave, the electric and the magnetic fields and waves have three 
components, each of which is a function of x,y,z,t (in Cartesian coordinates).  

(34.5) 
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Every component satisfies a wave equation like (34.3), which is what we are going to 
show.  
We start with the assumption that we are in a region of space where there are no 
charges and currents, but where time varying electric and magnetic waves are 
present. Such a region of space is referred to as the vacuum. None of the Maxwell 
equation contain charge or current densities and we are left with the four equations: 

(34.6) 
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we see that if we apply the differential operator , curl = ∇×



, to the first equation  (34.6) 
a) we get an expression with E∇×

 

on the right side, like this 
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We use Faraday’s law on the right side: 
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(34.9) 
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On the right side we now have a constant times the second time derivative of the 
magnetic field. 
 
What the hell is ( )B∇× ∇×

  

? 

We have still to evaluate the left side of (34.8) with the double curl expression. Now, 
remember that the curl is both a vector and a derivative operator, which means that we 
have to apply the product rule for derivation, maintaining the correct order of the cross 
product which is anti commutative. Also, remember how we can convert a double cross 
product according to  
(34.10) ( ) ( )( ) for any three vectors , ,A B C B A C C A B A B C× × = −

          

   
(See: 230 ch19supp2 Vector operators.docx) 
 
We apply the double curl rule on (34.2) c) 
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On the right side we have now the scalar product of the del operator with itself: 
(34.12)
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(We encountered this operator before in the derivation of the Biot-Savart law ch29 
magnetic fields.docx). 
The first term of this expression is the second partial derivative with respect to x, which 
was also part of the linear wave-equation. This means that we have just obtained the 
wave equation for the magnetic field: 

(34.13) 
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We can immediately see that the factor on the right hand side must be equal to the speed 
of propagation of the electromagnetic wave: 

(34.14) 0 0 2

1
c
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As this is a vector equation it represents a scalar equation for each component of the 
magnetic field. 
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By applying the curl operator on equation c) in (34.6) we get the wave equation of the 
electric field: 
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Each component of these vector fields satisfies the wave equation. 
For example, the wave equation for Bx is then, : 
(34.17)  
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34.2 Solution of the wave equation for e.m. waves: 
The same mathematical equations have the same solutions, therefore we can write down 
the solution for each of the components of the electric and magnetic fields following what 
we learned when discussing the linear wave equation for waves on a string or sound 
waves: 
For a linear one dimensional wave we had in complex notation: 
(34.18) ( )

max( , ) i kx ty x t y e ω−=  
 
Here the wave number k = 2π

λ was associated with a wave propagating in the x-

direction. It is easy to generalize the wave number in one direction to a wave number 
vector  
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(34.19) 
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Thus, we can easily generalize the linear wave into a spatial wave spreading in all 
directions:  
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When we do the same for each component of the magnetic and the electric fields we can 
immediately write down the general form of their solutions:  

(34.21) 
( )

( )
max

max

( , , , )

( , , , )

i k r t

i k r t

E x y z t E E e

B x y z t B B e

ω

ω

−

−

= =

= =













  

  

 
 
34.3 Derivatives and

t x
∂ ∂
∂ ∂

of the wave functions in exponential form: 

As we saw already in the case of the time-derivatives of the complex functions for 
charges and currents in the previous chapter, the derivatives of exponential functions are 
particularly easy to perform,  

(34.22) 
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34.3 a Operator derivatives and∇ ∇×
 

  applied to exponential functions: 

The del operator ∇


 applied to an exponential function of the form ( )i k r te ω−




 turns into a 
multiplication with the vector ik



. Just like the partial time derivative turns into a 
multiplication with iω , so does the del operator turn into a multiplication with ik



 

(34.23) ( )i t i
t

ik

ω ω∂
− = −

∂
∇⇒




 

In the case of the del operator, we must distinguish the ways in which the derivative 
operates, namely, as a scalar product, or as a cross-product: 

(34.24) 
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34.3b Using the new rules on e.m. wave functions: 
(34.25) 
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Maxwell’s equations (34.6) can be easily expressed by using the derivative rules above. 
We obtain a series of equations which help us understand the  peculiar behavior of 
electromagnetic waves. 

 
 Maxwell’s equations in the vacuum turn into products between vectors. Let us start with  
 

(34.26) 0 0

0 0

divE ik E E k

divB ik B B k

= ⇒ ⋅ = ⇒ ⊥

= ⇒ ⋅ = ⇒ ⊥

 
  

 
  

 
This means that the divergence rules for the electric and magnetic field have as a 
consequence that the directions of the electromagnetic fields in an e.m. wave are always 
perpendicular to the direction of propagation, determined by the direction of wave-
number vector k



. 
 

(34.27) ( )BcurlE ik E i B k E B
t

ω ω∂
= − ⇒ × = − − ⇔ × =

∂



 
    

 

This means that E


 is also perpendicular to B


. We apply the right hand rule to determine 
the relative directions of the three vectors, 

, ,E B and k


 

.  
 
By just considering the magnitudes in (34.27) we see 
that: 

(34.28) E B B B cB
k T
ω λ λν= = = =  

(34.29) E cB=  
 
We also see that the electric and magnetic fields in 
an e.m. wave are always in phase.(There is no 

imaginary number in the final equation (34.27), which would cause a phase shift between 
the electric and the magnetic field. ) 
 
 
The right hand rule determines the relative direction of the electric with the magnetic 
field, both of which are perpendicular to the direction of propagation.  
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 The relative orientation of the three directions of , ,E B and k


 

  which are 

perpendicular to each other is such that the cross-product E B×
 

points in the 
direction of propagation k



. 
 
Here is an example: Draw the picture of a plane e.m. wave propagating in the z-direction. Suppose that the 
wavelength is 50.0cm, and the electric field vibrates in the x-z  plane with an amplitude of 220V/m. a) 
calculate the frequency of the wave and b) the magnitude and direction of B



when the electric field has its 
maximum value in the positive x direction c) write an expression for B



with the correct unit vector with 
numerical values for Bmax, k, and angular frequency, and with its magnitude in the form 

( )max sinB B kz tω= −  

a) fλ=3E8 gives us f=6E8Hz; b)Bmax= 7max 7.33 10E T
c

−= ⋅ in the –y direction c) 

7 8 7 (6 12 8 )27.33 10 sin( 12 10 ) j or 7.33 10 j
0.5

i z E tB T z t B Te
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π ππ π− − −= − ⋅ − ⋅ = − ⋅
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To better study the behavior of the e.m. wave we assume that the propagation occurs in 
the x-direction, and that ( ) j ( , ) ji kx t

yE E e E x tω−= =
 



Consequently, we have fixed the 

magnetic field in the z direction ( )i kx t
zB Be uω−=



 Such electromagnetic waves in which B


 

and E


are confined to a fixed direction perpendicular to the direction of 
propagation are called linearly polarized.  
 
For actual calculations with real numbers we use sin( )kx tω−  or cos( )kx tω− . 

 
 
Now, in contrast, assume a circularly polarized e.m. wave, which, at some point in time, 
has the following electric field with components in the x- and y- directions, associated 
with it: ( ) 1 2 0 0, sin( ) i+ cos( ) jE z t E E E kz t E kz tω ω= + = − −

 
  

 
Find the corresponding magnetic field as well as the scalar and cross-products of the 
electric and magnetic fields. This field oscillates in the x-z and the y-z planes. So does the 
magnetic field. The wave propagates in the z-direction. The first component of B must 
point in the j



direction, the second component in the i−


direction, so that the cross-

products both point in the +z direction. ( ) zi j=j -i k u× × = ≡
    

 ; k= 0,0,1


 

( ) 1 2 0 0, sin( ) j-B cos( ) iB z t B B B kz t kz tω ω= + = − −
 

  

 

Therefore ( ) ( )2 2
0 0 0 0 0 00 and sin cos z zE B E B E B kz t E B kz t u E B uω ω ⋅ = × = − + − = 

   

   
The electric and magnetic field vectors are always perpendicular to each other, but they 
rotate in their plane with an angular velocity ω. 
 
 
34.4 The Poynting vector, electromagnetic energy intensity vector: 
The direction of propagation of any e.m. wave it is also the direction in which energy is 
being carried. The intensity of the electromagnetic wave is given by the 
Poynting vector .  

,max( , ) sin( )z z zB B x t u B kx t uω= = −


   

xu  

 

 

( ) ,max, , , sin( )y y yE E x y z t u E kx t uω= = −


   

x 

z 

y 
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(34.30) ( )
0

1S E B
µ

= ×
  

 

 
Next we are going to study the relationship between this energy intensity vector, the 
Poynting vector, which is a vector function ( , )S r t



and the energy density ( . )u r t  , which 
is a scalar function.  

(34.31)
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[ ]
0

2

1  Poynting vector, instantaneous intensity vector 

of an electromagnetic field =  power per unit area. S

S E B

Watts
m

µ
= ×

=

  

 

Let’s just look at the magnitudes: 

(34.32) 
2 2 22 2 2
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0 0
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2 2 2 2
E c BB B Bu with cε ε ε µ

µ µ µ
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(34.33) 
2

0 0

EB cBS uc
µ µ
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We recognize in 
2

0

B
µ

the magnetic energy density u. So, S has the units of energy density 

times m/s which is: 3 2 =intensityJ m J Power energy
m s m s area time area

= = =
⋅  

Let us look at it differently: u is the energy density. If we multiply u by the volume 
∆V=A∆x we get the total energy contained in the volume ∆V. This volume is carved out 
by the Poynting vector in the time ∆t. The em wave travels at the speed of light, so:  

(34.34) 
dU u dV u A dx u A cdt
dU Spower u A c A c S A
dt c

= ⋅ = ⋅ ⋅ = ⋅ ⋅ ⇒

= = ⋅ ⋅ = ⋅ = ⋅
 

 
The Poynting vector S



defines the energy current density of an electromagnetic field. 
While this current density vector travels through any volume in space it carries energy 
(power) with it. When it passes through an arbitrary cross-section A for a time dt, an 
energy stream passes through that cross-section which has the value S∙A∙dt. The 
electromagnetic energy which was in the volume Adx=Avdt is uAvdt, with v=c, the 
speed of light. Thus, the energy content of the volume decreases. The energy stream 
through the cross-section A in the time dt, decreases the energy of the volume.  This is 
most elegantly expressed as:  

(34.35) udivS
t

∂
= −

∂



 
If we apply Gauss' law: 
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(34.36) V V V

V

u d dUdivSdV dV udV
t dt dt

dUSdA
dt∂

∂
= − = − = −

∂

= −

∫∫∫ ∫∫∫ ∫∫∫

∫∫



 



 

The flux of the instantaneous electromagnetic intensity through a closed surface is equal 
to the power leaving the volume contained in the surface. 

 
(34.37) dxS Adt uAdx SA uA uAc

dt
⋅ = ⇒ = =  

(34.38) S uc=  
 
 
The time averaged Poynting vector and the time averaged energy density over a whole 
period is given by assigning an rms value to the amplitude of the magnetic field and the 
electric field. As both, the electric field and the magnetic field in an e.m. wave vary like a 
sine function, the average value over a whole period is equal to ½, just like in the case of 
the average power of an ac-current. 

(34.39) max max;
2 2rms rms

E BE B= =  

(34.40) ( )max max
max

0

1 1 1 and 
2 22 2

E BS S u u t
µ

= = =  

 
The average value of the Poynting vector is the average intensity=average 
power/unit area. 

(34.41)    
2 2
max max

0 0

1 1 intensity
2 2

E cBS I
cµ µ

= = ≡ =
 

For the average energy density of an electromagnetic wave this means obviously that: 

(34.42) 
2

20 max
max

02 2
B Su E

c
ε

µ
= = =  

 
We arrive at the same result formally, if we use the fact that the Poynting vector S



 
(energy intensity=power/area ) behaves mathematically like an electromagnetic wave. 
We assume the same is true for the energy density u. Thus, we can write: 

dU udV Adx Acdt= = =  

 =is the rate of decrease of total energy = - dUS A
dt

⋅
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(34.43) ( ) ( )

max max;i k r t i k r tS S e u u eω ω− −
= =

 

 

 

 

 
We derived the energy conservation of an e.m. wave in a more intuitive fashion earlier, 
namely, that the flux of the e.m.-intensity vector S



through a surface takes the energy of 

the wave with it. In magnitudes, this just becomes dUSA
dt

= . The accurate mathematical 

relationship is called a continuity equation for e.m. waves:  

(34.44) udivS
t

∂
= −

∂



 
From (34.26) we know how to perform the derivatives on an exponential wave:  

(34.45) udivS ik S and i u
t

ω∂
= ⋅ = −

∂

 

 
Therefore, the continuity equation for the Poynting vector (34.44), can be said to express 
the fact of local energy conservation of electromagnetic waves. As the wave travels 
through space it does not leave energy behind; the energy it carries through any cross-
section during a certain time  is exactly  the energy contained in the volume through 
which it traveled during this time. 

(34.46) ( )udivS ik S i u
t

ω∂
= − ⇒ ⋅ = − −

∂

 

 
 
The direction of propagation is parallel to the direction of the Poynting vector, therefore: 
 

(34.47) kS u S u cu
k
ωω= ⇒ = =  

 
Problem: calculate the average energy contained in a unit volume through which an e.m. wave passes, 
whose maximum electric field is 250V/m. 

2 12
2 2max max 0
max2

0

1 1 8.85 10 250 1 0.277
2 2 2 2 2

S EU uV V V E V J
c c

ε µ
µ

−⋅
= = = = = ⋅ =  

Note: 

(34.48) 
2

max 0 max

 of an em wave :

of an em wave :

2 2

avg avg

avg

avg

Intensity S u c
Power S A

u Eu u ε

=

≡ = =

 

 
 
34.5 Pressure in an electromagnetic wave: 
If an e.m. wave hits a surface the energy contained in the wave gets absorbed by the 
surface and is partially reflected back. If there is no reflection (totally black surface) we 
talk about a perfect absorber. If all energy is reflected (mirror) we talk about a perfect 
reflector. (In reality there is no such thing as an absolutely perfect reflector or absorber, 
they are just limiting cases to consider). 
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By writing the energy density in terms of the total energy divided by the volume, we see 
that energy density can also be interpreted as the pressure of the Poynting vector on a 
surface A during the time t in which it carves out the volume V. These derivations are not 
rigorous, but the results are correct. 
(34.49) S uc=  

(34.50) 
S U Fdxu pressure P
c V Adx
= = = =  

Problem: A 100mW laser beam is reflected from a mirror. Calculate the force on the mirror. 
Force is change of momentum over time. Pressure is force over area=F/A=u=S/c.

S power powerF A A
c Ac c

= = =   

For complete reflection we need twice the force of  perfect absorption. F=2P/c=200mW/c. 
34.6 Momentum of an electromagnetic wave: This again leads us to the amount of 
momentum exchanged with the surface A, by writing F=dp/dt.  
While the e.m. wave travels through the volume Adt it can be considered to impart an 
average momentum onto the surface, which is the momentum contained in the e.m. wave 
of volume V. If we actually place a black surface into the path of the wave, all energy 
enters the black surface, none is reflected. Thus the total momentum of the wave 
contained in the volume  V gets imparted to that surface. 

(34.51) 

1Pr ;F dpessure u dp u dt A
A dt A

Adx uV Udp u dt
dx c c

= = = = ⋅ ⋅

= ⋅ ⋅ = =
 

(34.52)  perfect absorberUdp p
c

⇒ =  
Momentum crossing the section A in the time dt is equal to the total energy contained in 
the volume carved out by the wave front in the time dt, divided by c. This is not only true 

for infinitesimal volumes but for any volumes due to dx x c
dt t

= = Therefore we are 

justified in using finite momentum p:  
The formula (34.52) is for perpendicular incidence of the light energy on a perfectly 
absorbing surface. Now, for a perfect reflector the change of momentum before and after 
being reflected from the surface is twice the result in (34.52) 
 

(34.53) ( ) 22 total momentum  Perfect reflectorout in
Udp p p p
c

= − − = = =
 

 
Note that the momentum imparted to the surface is equal to the momentum of the 
e.m. wave. A reflected wave carves out twice the volume which leads to twice the energy 
and twice the momentum. 
 



FW C:\physics\230 lecture\ch34  Maxwell EMW Poynting.docx           Page 13 of 21 
P: 12/11/2009 9:31:00 AM; S:12/11/2009 9:31:00 AM 

 

 (34.54)  Perfect absorberUp
c

=  

 
 
Let us see if we can understand this on a more basic level. We ask what happens to a 
charge q on the surface when an e.m. wave hits it. Assume a linearly polarized wave with 
E in the x direction and B in the y direction. The direction of propagation is z. 

 
 
 
With this crude model we can also see that the momentum of an electromagnetic wave is 
equal to the total energy of the wave divided by c. 

(34.55)  Up
c

=  
We use U for potential energy (instead of E) so as not to create confusion with the 
electric field E.  
--------------------------------------------------------------------------------------------------------- 
Food for thought (if time permits): Optional 
34.7 Quantum-physical momentum and energy of a photon. 
If we probe deeper into the phenomenon of electromagnetic waves we enter the field of 
quantum mechanics, and we encounter the difficult issue of wave particle duality. 
Electromagnetic waves actually consist of particles, photons, which have momentum and 
energy associated with them and spin. For every particle we have the always correct 
quantum-physical formulas: 
 

(34.56) 2 2 2 4
0

 and energy E=p k

energy E p c m c

ω=

= = +





 

 

 
As a photon does not have a rest mass, m0=0 and we get the same formula for momentum 
we just arrived at, namely: 
(34.57) E U pc≡ =  

E


 

B


 

( )22qE 1 1v=at= v
m 2 2

F qE ma t K m qEt= = ⇒ ⇒ = =
 

  

( )
2 2

22

The magnetic field exerts a force on the moving charge, in the 

direction of propagation:

q 1 q 1vB= ; :
2

BF qv B
dp EB EB Eq t p t qEt with B
dt m m c c

= × ⇒

= ⇒ = = =
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which is the same result we get when calculating the speed of propagation of 
the e.m. wave: 

(34.58) 
Ec

k k p
ω ω

= = =




 

Energy E ω=   and momentum p k=




 of a magnetic wave are really the quantities 
behind the angular frequency and wave-number vector. 
Energy and momentum of a photon are related to the wavelength and frequency of the 
corresponding electromagnetic wave through equation (34.58). 
Earlier on, when we talked about how the sun creates its energy we saw that in the 
process of fusing four protons into a Helium nucleus (α-particle=nnpp) 17.6 MeV of 
energy is being released during each process. This energy is the energy of photons being 
created during this process. Let us calculate their wavelength and frequency and compare 
them to the wavelength and frequency of visible light with the wavelength of 600nm. 

(34.59) 
13

13
22 21

34

17.6 17.6 1.6 10
17.6 1.6 10 12.67 10 or 4.25 10
1.055 10

MeV J hf
J f Hz

Js s

ω

ω

−

−

−

= ⋅ ⋅ = =

⋅ ⋅
= = ⋅ = ⋅

⋅



 

Electromagnetic waves with such a high energy (frequency) are called γ-rays. They easily 
penetrate human tissue and just about everything else and destroy molecular structures. 
Thus, they are highly dangerous to all living things. The sun does not emit such radiation, 
thank you God, which means that the photons created in the interior of the sun where we 
have temperatures of 1 million K and more, must lose most of their energy while they are 
traveling to the surface of the sun. We can understand this again through the concepts of 
mean free path. The photons bump into protons, neutrons, and α-particles, and move 
towards the surface very slowly, which is 696 Mm away, 432,000 miles (109 times the 
radius of the earth. (The sun is roughly 1 million times larger than the earth!). The 
concentration of particles is highest in the center of the Sun, therefore there is a gradient 
of density from the interior to the exterior, resulting in a diffusion current towards the 
outside. On the other hand, gravity pulls the particles to the center. The resultant current 
is a current that allows the photons to slowly move to the outside of the sun. 
If we are given the energy in an electromagnetic wave we can calculate the number of 
photons contained in it. Both energy and momentum of the total magnetic wave are 
multiples of the individual energies and momenta of individual photons. To describe the 
motion of individual particles or photons, we must use the complex exponential 
functions. For example, for a free particle we describe its motion through a function like: 

(34.60) ( )
0

i p r Et
eψ ψ

⋅ −
=

 

  
which is a solution of the complex differential equation know as the Schrödinger 
equation: 

(34.61) i H
t
ψ ψ∂

=
∂

  

which can be interpreted as saying that the imaginary change in time of the function ψ is 
proportional to its energy, which carries the letter H. It is not simply an energy but a 
differential energy operator similar to the Laplace and del operators we encountered in 
this chapter.   
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This describes the reality of all particles in the universe. Imaginary numbers and 
imaginary waves of particles form the mysterious actual world of Maya: illusory reality-
actuality or real-actual illusion, neither, and both. The only real, i.e. measurable part of 
this turns into statements of probabilities, which is very unsatisfactory and disconcerting 
for the human mind which wants certainty above all else. 
--------------------------------------------------------------------------------------------------------- 
 
 
Going back to the relationship between momentum and energy of an e.m. wave 
we memorize that the momentum transfer (for perpendicular incidence) of an 
electromagnetic wave onto a perfectly absorbing surface (black) is equal to the total 
energy in the wave (in a particular volume of space traversed by the e.m. wave-front) 
divided by the speed of light c. (34.55) p=U/c. For a perfect reflector like a mirror, this 
amount needs to be doubled.  
 
 
If incidence in not perpendicular but makes an angle of θ with the perpendicular direction 
on the surface we have: 

(34.62) 22 cosUp perfect reflector
c

θ=  
Problem: A 3.0mW laser beam hits an area of 2mm radius. The Poynting vector (intensity) multiplied by 
the area gives us this average power: 

2 2

33 955 ;mW WSA mW S
r m

S u pressure
c

π
= ⇒ = =

= =
 

Problem: During a spacewalk an astronaut’s tether to the space ship suddenly unhooks. Fortunately, he 
carries a 1kW emergency laser with himself. If he finds himself 25 m from the space ship, how long will it 
take him to get back, using the laser, if his total mass is 95.0kg, including the laser. 
If he fires the laser in a direction opposite to the perpendicular surface of the space ship, we can use 
momentum conservation. The momentum of the laser light will equal his own momentum. 

1 1U dp dUp F Power
c dt c dt c

= ⇒ = = =  

This is the force pushing the astronaut towards the space-ship with acceleration “a” 

(34.63) 
8

2

1000; 3.51 10
3 8 95

2

F Power W mF Ma a
M cM E s

xt
a

−= = = = = ⋅
⋅

=
 

It will take 629 minutes to get back to the ship. Note that he will have to carry batteries containing 
6.5kW∙hours of energy. What kind a battery could that be? 
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I have a 7.4V Lithium battery rated at 1500mAhrs which has a mass of 85 grams. How many such batteries 
would be required to power the laser above? 

1.5 7.4 40
23.4 586

40
586 85 50

energy power t I t V A hrs V kJ
MJ

kJ
g kg

= ⋅ = ⋅ ⋅∆ = ⋅ ⋅ =
⋅

=

⋅ =

 

He would require 586 such batteries having a mass of 50 kg. This means he would be much better off just 
throwing his battery pack away. Also, it looks like our astronaut with a total mass of 95kg including a 50kg 
battery pack must be a woman or a dwarf. If she can push her battery pack away from her with a speed of 
1m/s she will move towards the space ship with the same speed, thus arriving back in safe harbor in a mere 
25seconds. Much better, than the 6.5 hours. 
 
Summary: (34.64) 

  

 of an em wave :

of an em wave :

Pressure of an em wave: 

Momentum  of an em wave in striking a surface A: 

avg

avg

avg avg

Intensity S uc
Power S A ucA

S S AF poweru F Au
A c c c

U uVp p
c c

=

=

= = ⇒ = = =

= =
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Addendum: (optional) 
34.8 Mathematical approach to the continuity equation: 
S


Energy intensity of an electromagnetic wave. 
 
We show later (see derivation (34.73) ) that energy conservation for the e.m. wave in the 
vacuum can be written as: 

(34.65)                 
udivS
t

∂
= −

∂



 

We accept this formula for the time being without proof. If we apply Gauss’s 
mathematical theorem to this equation it says that the flow of energy  through the walls of 
the surface of a volume created during the time t is equal to the amount of e.m. energy 
leaving the volume during this same time t. Thus, (34.65)  is a mathematical statement of  
energy conservation for electromagnetic waves.  
 
[It is a specialized case of the more general formula which simply says that the total 
energy (or mass) in a certain volume, can only change if energy (or mass) flows out or 

into this volume. ; vdiv j j
t
ρ ρ∂

⋅ = − =
∂

 

  ] 

 
The net rate of outflow of electromagnetic energy is equal to the loss of electromagnetic 
energy per unit time. 
If we assume a volume in the form of a cylinder whose central axis is parallel to S, and 
whose length is c·dt then, during the time dt the Poynting vector (the electro-magnetic 
wave front, travelling at the speed of light) moves through this whole volume , “carving 
out a volume” Adx Avdt Acdt= = . This is the volume which we use in applying Gauss’s 
law: 

(34.66)
( )

( )
V V V V

d ddivSdV S dA udV u dV u Ax uAc
t dt dt

dSA SA u Ax uAc
dt

∂

∂
= ⋅ = − = − = − = −

∂

= − = − = −

∫∫∫ ∫∫ ∫∫∫ ∫∫∫
  





 

 
As the electromagnetic wave moves at the speed of light, the volume carved out in 
the time t is Act . During this time t , the Poynting vector S



 travels through the distance 
ct. The total energy contained in the traversed volume is uAct. The total energy decrease 

Volume V=Ac∙t 

S A⋅
 

The amount of the electromagnetic energy flux 
occurring during the time t, necessary for the 
electromagnetic wave to traverse the volume at the 
speed of light is equal to the amount of e.m. energy 
leaving the volume during the same time t.  

A
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per unit time is equal to the rate of outflow of energy expressed by the  flux of the 

Poynting vector ( )
V V V

d dS dA udV u dV u Ax uAc
t dt dt∂

∂
⋅ = − = − = − = −

∂∫∫ ∫∫∫ ∫∫∫
 

   

A positive outflow (positive flux) implies negative rate of change in energy contained in 
the volume enclosed by the surface A. The magnitudes of the two quantities are the same. 
Thus, we have SA ucA= , and after dividing by A we get for the relationship between the  
 

magnitudes of S and u: (34.67) 
Su
c

=  
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34.8a General Proof of the continuity equation for an e.m. wave: 

0

u E BdivS for S
t µ

∂ ×
= − =

∂

 

 

. 

The total instantaneous energy density associated with the electro-magnetic field is: 

(34.68) ( ) ( ) 2 2 2 2
0 0

0 0

1 1 1( )
2 2B Eu t u t u t B E E Bε ε
µ µ

= + = + = =  

 
This must be consistent with the electromagnetic energy carried in any e.m.-wave. We 
have defined the Poynting vector which gives us the rate of flow of energy in an 
electromagnetic wave: 

(34.69) 
[ ]

0

2

 which is the intensity of a wave

power
cross-sectional area A

E BS

WattsS
m

µ
×

=

= =

 



 

 
 
We need to figure out how the div operator works on the cross-product E B×

 

where the 
electric and magnetic fields satisfy Maxwell’s equations in the vacuum (34.2): 

(34.70)

( )

( )
 

( ) ( )
0

0

1 ; 

ˆ ˆ  =

where we have used the product rule for derivative operators; 
we must be careful with the proper order of the ve

S E B divS S

divS E B E B E B B E E B

µ

µ
↑ ↑

= × = ∇

   
= ∇ × = ∇ × +∇ × ∇× − ∇×   

   

    



               



ctors in the cross product.
ˆ  means that  operates on this vector only. E
↑

∇


 

Next we use cyclical permutation for this mixed product, so that the vector operator 
appears directly in front of the vector field it operates on: 

(34.71) 

( ) ( ) ( )



( ) 2

We use cyclical permutation = = for

1ˆ
2

B
t

A B C C A B B C A

BE B B E B B
t t↑

∂
−
∂

× × ×

   ∂ ∂
∇ × = ∇× = − = −   ∂ ∂   



       



       



 

We do the same for the second term in (34.70) 

(34.72)
 

( )
 

0 0

2

0 0 0 0
1ˆ ˆ ˆ ˆ

2
E
t

E EE B B E E B E B E
t t

ε µ

ε µ ε µ
↑ ↑ ↑ ↑

∂
∂

       ∂ − ∂
∇ × = ∇× = ×∇ = − ∇× = − =       ∂ ∂       



 

            



 

For the whole expression we get finally: 
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(34.73) ( )
2 2 2 2

0
2

0 0 0

1 1 1=
2 2 2 2 B E

B E B EdivS u u
t c t t t t

ε
µ µ µ

∂ ∂ ∂ ∂ ∂
= − − − − = − +

∂ ∂ ∂ ∂ ∂

   



 

 

(34.74) 
2 2

2 2
2

0 0

1 1( )
2

c BdivS B B u
t c t tµ µ
∂ ∂ ∂

= − + = − ≡ −
∂ ∂ ∂

 

 
Proof that ( ) ( ) ( )E B B E E B∇⋅ × = ⋅ ∇× − ⋅ ∇×

        

, which is a mixed product that can be 

calculated directly, bearing in mind the product rule for derivatives: 

(34.75) 

( )

( ) ( )

, , , ,y z z y z x x z x y y x

y yz z
z y y z

x xz z
x z z x

y yx x
y x x y

E B E B B E E B E B E B E B
x y z

E EB BB E E B
x x x x

B EE BB E B E
y y y y

B EE BB E B E B E E B
z z z z

∂ ∂ ∂
∇ ⋅ × = − − −

∂ ∂ ∂

∂ ∂∂ ∂
= + − − +

∂ ∂ ∂ ∂
∂ ∂∂ ∂

+ + − − +
∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ − − = ∇× − ∇×

∂ ∂ ∂ ∂

  

     

 

If we want to write the mixed product in terms of a determinant we have again to pay 
attention to the fact that we are dealing with derivates which require the product rule if 
applied to a product of functions: 

(34.76) ( ) x y z x y zE E E B B B

x y z x y z

x y z x y z
E B

B B B E E E

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∇ ⋅ × = −
  

 

The derivate operators act only on the second row of the determinant.  
 
34.9 Limitations of Maxwell’s equations. 
Maxwell’s equations explain much of the properties of electromagnetic phenomena. 
However, there are some insurmountable problems with it. For example, according to 
Maxwell’s equations accelerated charges form e.m. waves which carry energy away. 
Electrons in atoms move in orbits and are therefore being accelerated. They should lose 
energy and spiral towards the nucleus. This is not the case and can only be resolved 
through quantum theory. Para-magnetism, dia- and ferro- magnetism also need quantum 
theory. All the facts about diodes and transistors need quantum theory for their 
fundamental understanding. 
Here are some of the important facts which quantum theory delivers, and which I have 
occasionally mentioned in my lectures, in addition to the relationships mentioned in the 
previous section on food for thought. 
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Black body radiation: (34.77) 

4

-8

;  in Kelvin
emissivity 0<e 1; A cross-sectional area; 

 Stefan Boltzmann constant=5.670 10

Power eA T T
e

σ

σ

=
= ≤

⋅

 

Particle wave properties:  
 

(34.78) 
energy of a free particle ;

momemtum of a free particle 

E h
hp k

ω ν

λ

= =

= =





 

Heisenberg’s Uncertainty Relations: 

(34.79) ;  
2 2xx p E t∆ ∆ ≥ ∆ ⋅∆ ≥
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