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33.1 Introduction: Choice of functions for the ac source. 
33.1a Summary: 
In this chapter we are going to study circuits with capacitors, resistors, and coils driven by an 
alternating power source of the form max( ) sinV t V tω= . We need to clearly distinguish between 
time dependent parts of such functions and their time-independent amplitudes.  
I will stick to the topics of  chapter 33 in the textbook by Serway, but use complex numbers and 
functions in order to derive the results. We use  
(33.1) ( )max max

ˆ ˆ ˆ ˆ( )  and Vi t i tI t I e t V eω ω= =  

max max
ˆ ˆ ˆ: ; ( ) ; complex amplitude; i tcurrent I complex current I t I e I i imaginary unitω= =   

Why do I do this? Just consider how you would calculate the ac-current in a loop containing a 
resistor, a capacitor and a coil in series.  

(33.2) ( ) ( ) ( )( )
Q t dI t

V t RI t L
C dt

= + +  

The derivative of a sine function gives you a cosine function, and the antiderivative gives you a 
negative cosine function. You end up with a sum of functions which you cannot factor out. Now 
look what happens when you use complex functions. 

(33.3) 
( )

( )

ˆ ˆ ˆ ˆ( )  and V
ˆ ˆ1 1 dIˆ ˆ ˆ and L

i t i t

i t i t i t

I t Ie t Ve

Q t
Ie dt Ie i LIe

C C i C dt

ω ω

ω ω ωω
ω

= =

= = =∫
 

The charge Q(t) is the antiderivative of I(t), while the impedance involves the derivative of I(t). 
If you use these complex functions the antiderivative corresponds to a division by iω, and the 
derivative corresponds to a multiplication by iω. Equation (33.2) becomes an algebraic 
relationship between complex quantities: 

(33.4) ( )max max
1 1ˆ ˆ ˆ ˆ ˆV ( ) ( )i t i te RI t I t i L I t R i L I e

i C i C
ω ωω ω

ω ω
 = + ⋅ + ⋅ = + + 
 

 

This means we have managed to write the relationship between current and voltage in an ac 
circuit in the same way as in a dc circuit. 
(33.5) ( )ˆ ˆ ˆ ˆV ( );  is called the equivalent impedance.eq eq eqV R I t Z I t Z= ⇒ = ⋅  
Solving for the current leads to: 

(33.6) max
1ˆ ˆ( ) Vˆ

i t

eq

I t e
Z

ω=  

If we write the equivalent impedance in terms of a magnitude multiplied by an exponential 
phase Φ, we get: 

(33.7) 
2 2 1ˆ ; tan

ˆ ˆ

i i
eq

i
eq eq

bZ a ib a ib e a b e
a

Z Z e

Φ Φ −

Φ

= + = + = + Φ =

=
 

Inserting this into (33.6) gives us: 

(33.8) ( )maxV̂ˆ( ) ˆ
i t

eq

I t e
Z

ω −Φ=  
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Thus, the magnitude of the current is equal to Vmax/Zeq. The argument of the sine, or cosine 

function of the current is shifted by -Φ; 1tan b
a

−Φ = . 

The most obvious difference between a dc voltage and an ac voltage, is that ac voltage changes 
polarity. It is negative and positive half the time. This holds of course for the current as well. 
In the case of a dc circuit we found that the relationship between voltage and current could 
always be written in terms of eqV R I= All we had to do was apply Kirchhoff’s law and find the 
equivalent resistance Req. Solving for I, we could then find the current in the circuit. Reminder of 
Kirchhoff’s loop law: 

(33.9) 
The algebraic sum of all voltages around any closed loop in a circuit must be 0

ˆat any instant in time. 0k
k

V∆ =∑  

A simple resistor in a circuit will dissipate the power supplied by the exterior voltage, with the 
current in the circuit directly proportional to the voltage, at all times, meaning that the voltage 
and the current across a resistor are in phase. If the voltage is a sine function, so is the current. 
We apply Kirchhoff’s law to the circuit: 

(33.10) 

Kirchhoff's rule say that we have to count the voltage drop negatively
if we pass through the resistor following the  direction of the current, because
in that case we go from a higher potential to a lower potential.

( ) 0; ( ) ( ) 0RV t V V t RI t+ ∆ = − =

 

(33.11) 
( ) ( )

( )
max max

max max

( ) sin sin
ˆˆIn complex notation: ( )i t i t

V t t t R I t RI t

t e RI t RI eω ω

ε ε ω ω

ε ε

≡ = = ⋅ =

= = =
 

There is no phase shift between the current and the voltage for the voltage/current 
relationship. Both voltage and current have the identical sine function (or cosine function.)  
We want to find a similarly simple way of expressing the relationship between ac current ˆ( )I t
and the applied ac voltage ( )ˆ ˆ( )V t tε≡  in circuits, containing so-called passive elements like 
resistors, capacitors (condensors), and coils, with their respective resistance, capacitance, and 
inductance.  

(33.12) ˆ ˆ ˆ( ) ( )eqV t Z I t= ⋅  
ˆ

eqZ is a complex number, which we will write in terms of its magnitude and its exponential 
phase. 

(33.13) 2 2 1ˆ ; tani
eq

bZ a ib a b e
a

Φ −= + = + ⋅ Φ =  

 
The real part of the power-source is an alternating voltage for which we use the notation:  
(33.14) ( ) ( ) max sint V t V tε ω= =  
We could also use a cosine function for the applied voltage, as some textbooks do, but instead 
 we are going to make use of complex numbers here and use for the applied voltage or emf: 
 



Dr. Fritz Wilhelm                                                                                                     page 4 of 23 
C:\physics\230 lecture\ch33 AC circuits.docx;  P 12/8/2009 S :12/8/2009 
 

 

(33.15) ( ) ( )
max max max

complex 
time-dependency

ˆˆ ; (or ) magnitude of the applied voltagei tt V t V e Vωε ε= = ⋅ =

 
For the current we use the same complex notation: 

(33.16) ( )


( )
max max max

complex
amplitude

ˆ ˆ i t i i t i tI t I e I e e I eω ω ω− Φ −Φ= = =

 
The phase Φ comes from the equivalent impedance ˆ

eqZ which is the sum of all the impedances in 
a circuit branch for which we calculate the current. As noted previously, in the case of a resistor, 
a coil, and a capacitor in series, this is equal to: 

(33.17) 2 2 11 1ˆ ; tani
eq

bZ R i L R i L a ib a b e with
i C C a

ω ω
ω ω

Φ − = + + = + − = + = + Φ = 
 

 

(33.18) 
( ) max max

( )max

ˆ ˆ ˆ ˆ ˆV ( )

ˆ( ) ˆ

i t i t i i t
eq eq

i t

eq

t e V e Z I t Z e I e

VI t e
Z

ω ω ω

ω

Φ

−Φ

= = = ⇒

=
 

The advantages of the complex notation will become apparent as we go along. The relationship 
between the complex amplitudes of voltage and currents can be described graphically through 
phasors or through their relationship in the complex plane of Gauss. 
It ultimately does not matter whether we use a cosine function or sine function for the applied 
voltage. The power in a circuit is the product between voltage and current. Their average value 
depends only on the maximum value for current and voltage and on the phase shift between 
them. (See later.) The two new passive elements in a ac circuit are the inductance L and the 

capacitance C. They produce a phase shift in the sinosoidal function of 
2
π

± .   

 
33.2 Review of Complex Numbers, (see file “ch32 Complex Oscillations”). 
Carl Friedrich Gauss introduced complex numbers: In the complex plane the y-axis is the 
imaginary axis and the x-axis is the real axis. Any complex number ẑ can then be written in 
terms of its real part x plus its imaginary part y. I usually use the the hat ẑ  on top of the complex 
number, or function. Note, that when we talk about the imaginary part y, we do not include the 
imaginary unit i. 

(33.19) ( )
ˆ
ˆ cos sin  Euler formulai

z x iy
z r i re θθ θ

= + ⇒

= + =  

 One can easily prove Euler’s formula by expanding the exponential function ex  in a McLaurin 
power series, and then substituting x with iθ. We must just use that i2 =-1; i3 =-i; i4 =1; i5 =i 



Dr. Fritz Wilhelm                                                                                                     page 5 of 23 
C:\physics\230 lecture\ch33 AC circuits.docx;  P 12/8/2009 S :12/8/2009 
 

 

Note that Φ is the angle between 
the horizontal axis and the 
magnitude of the complex number. 
Note in particular that: 

(33.20) 2 21i i
i e and i e

i

π π
−

= = − =  

 
1ie π = −  

If you add π/2 (or any other angle 
to any vector you rotate the vector 
ccw by this angle.) If you subtract 
it, you rotate the vector in the 
clockwise direction. This is  
convenient if you want to 
determine the relationships between 

the following functions: 

(33.21) 
cos sin ;cos sin

2 2

sin cos ;sin cos
2 2

t t t t

t t t t

π πω ω ω ω

π πω ω ω ω

   + = − − =   
   
   + = − = −   
     

Taking the derivative of an exponential complex function corresponds to rotating its vector by 
π/2 counter clockwise: 

(33.22) ( )

22 cos sin
2 2

cos sin sin co cos sin sin cos
2

s

We are equating the real and the imaginary parts of the complex f
2

unction

ii ii id e ie e e i
d
d i i n

d
a d

ππ θθθ θ

π πθ θ

π πθ θ
θ

θ θθ
θ

θθ θ

 ++  
 

   + = − + = 

   = = = = + + + =   
   

+ = − + ⇒ 
   

 with each other.

 

Taking the anti-derivative of an exponential complex function corresponds to rotating its vector 
by π/2 clockwise: 

(33.23)

( )

22 cos sin
2 2

cos sin cos ssin cos in sin cos
2 2

i ii ii ee d e e i
i

i d andi

ππθ θθθ π πθ θ θ

θ θ θ θ π πθ θ θθ θ

 −− +  
 

   − = − = −

   = = = = − + −

  
   

=   
   

+ = − ⇒

∫

∫
 

 
33.3 Capacitors in AC-circuits: 
For example, inside of an ac circuit with a capacitor, the voltage drop across the capacitor is  

(33.24) ( ) ( )
C

Q t
V t

C
∆ =  

With a steady dc current, once the capacitor is charged, the circuit behaves like an open circuit, 
no current is flowing any more.  

 

 

Vmax 

Φ  

(a, b) 

a 

b 

Complex plane of Gauss 

max
ˆ iV V e Φ=

real axis X ; 

imaginary   
axis  Ysin tω  
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max( ) sint tε ε ω=  

( )
C

Q tV
C

∆ =

With an ac current the voltage difference across the capacitor oscillates back and forth with 
the charge, because the charge is proportional to the applied voltage. We apply Kirchhoff’s rule, 
noting that we traverse the capacitor from a higher to a lower potential: 

(33.25) ( ) ( ) ( )0 0C
Q tt V t

C
ε ε+ ∆ = ⇒ − =  

(33.26) ( ) ( )max maxsin sin
Q t

t Q t C t
C

ε ω ε ω= ⇒ = ⋅  

But what about the current? We get the current by taking the derivative of the charge: 

(33.27)
( ) ( )

( )

max

max

cos

sin
2

dQ t
I t C t

dt

I t C t

ω ε ω

πω ε ω

= =

 = + 
 

 

This shows that the current in a circuit with 
a capacitor leads the applied voltage by π/2. 
What matters physically is this phase 
relationship between the current in a circuit 
and the applied voltage. 
 

33.3a Using Complex Functions To Determine The Current: 
We determine the current across a capacitor by first finding the complex charge and then taking 
the derivative. The exponential forms of our functions are particularly easy to deal with: 

(33.28) 

derivative = multiplication with 

1  anti-derivative = division by 

i t i t

i t i t

d e i e i
dt

e dt e i
i

ω ω

ω ω

ω ω

ω
ω

= ⇔

= ⇔∫
 

 
Applying Kirchhoff’s law to the loop, we traverse the capacitor in the direction of the positive 
current from a higher to a lower potential, hence: 

(33.29) ( ) ( )
ˆ ( )ˆˆ ˆ0 0C

Q tt V t
C

ε ε+ ∆ = ⇒ − =  

 (33.30) max
ˆ ( ) i t

C

applied
voltage

Q t C e ωε=


 

We obtain the current in the loop by taking the time derivative of the charge : 

(33.31) ( )max

ˆ ( )

ˆˆ ˆ( ) i t

V t

dQI t i C e i C t
dt

ωω ε ω ε= = =


 

Note that we made use of the fact that the imaginary unit “i” is equal to 2
i

e
π

.  
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2
max

ˆ( ) oscillating current of the capacitor

The current leads the applied voltage by .
2

i t
I t C e

πω
ω ε

π

 + 
 = =

 

If we choose a sine function for the applied voltage we get the result in (33.27) 
 

 
The current leads the voltage by 

2
π , which amounts to the same as saying that the voltage lags 

behind the current by 
2
π . 

The voltage across a capacitor in terms of the current is given by: 

(33.32) ( ) ( ) 2max max
ˆ

ˆ i t
i t

C

I t I IV t e e
i C i C C

πω
ω

ω ω ω

 − 
 ∆ = = =  

In our approach we use the complex capacitive impedance 1ˆ
CZ

i Cω
= and write down 

Kirchhoff’s law for the purely capacitive circuit, like this 

(33.33) ( ) 1ˆ ˆ ˆ ˆ( ) ( )C CV t I t Z I t
i Cω

= =  

We write the complex impedance in terms of a magnitude and an exponential phase: 

(33.34) 2 21 1 1ˆ ˆ  because 
i ii

C eqZ Z e e i e
i C C i

π π

ω ω
− −Φ= = = = − =  

We now multiply the complex portion of the impedance into the complex exponential portion of 
the current : 

(33.35)   ( ) 2max2
max

1ˆ ˆ ˆ( )
i ti i t

C C
IV Z I t e I e e

C C

ππ ωω

ω ω

 −−  
 ∆ = = =  

In a purely capacitive circuit, this  represents the voltage drop across the capacitor.  
Recall that our goal is to find formulas for the voltage drop across a capacitor or an inductor, 
which are similar to Ohm’s law in the form of V=RI. We call these coefficient between the 
voltage and the current in an ac circuit: impedance.   
 
 
 

  
( ) ( ) max

ˆ ˆ i tV t t e ωε ε≡ =  

( ) ( ) 2
max

ˆˆ ˆ
i t

CdQI t i C t C e
dt

πω
ω ε ω ε

 + 
 = = =
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C 

~ 
( ) m

ˆ ˆ( )V t t Vε≡ =

 
 

max
max

eq

VI
Z

↑ =
 

 

R 

Memorize: the complex impedance for a capacitor is:  

(33.36) 
1ˆ

CZ
i Cω

=  

This looks harder than it really is.  
 
Let’s assume the following values: max500 / ; 150 ; 25s V C Fω ε µ= = =  

We calculate 

500
2max

max
1 150 ˆ80 ; ; 1.87 ; ( ) 1.87

2 80

i tV VZ I A I t Ae
C Z

ππ
ω

 + 
 = = Ω Φ = − = = = =

Ω  
Some texts use the term capacitive reactance for for the magnitude CZ . (Both names, reactance 
and impedance indicate the fact that an inductor or a capacitor impede the current, or act against 
it.) 
33.4 RC Circuits (R and C in series): 
Let us now introduce a resistor into the circuit to get an RC circuit, with an ac power supply. 

Kirchhoff’s law: ( ) ( )
ˆ ( )ˆ ˆ ˆˆ ˆ0 ( ) 0C R

Q tt V V t RI t
C

ε ε+ ∆ + ∆ = ⇒ − − = We just found the voltage drop 

across the capacitor in terms of the complex current 
1ˆ ˆ

CV I
i Cω

∆ = . If we use that in our equation we get: 

(33.37) ( ) 1 ˆ ˆˆ ( ) ( ) 0t I t RI t
i C

ε
ω

− − =  

Factoring out the current we get a relationship reminiscent of 
V=RI for dc circuits, namely: 

(33.38) ( )
ˆ

1 ˆˆ ( ) 0

eqZ equivalent
impedance

t R I t
i C

ε
ω

=

 = + = 
 


 

 
The equivalent impedance is a always a complex number which we write as a complex 
exponential number, using Euler’s formula: 

(33.39) 2 2 1ˆ ˆ ;  with =tani i
eq eq

bZ a ib Z e a b e
a

Φ Φ −  = + = = + Φ  
 

 

Written in this form, it is particularly easy to determine the maximum current and the phase shift 
between the current and the applied voltage: 
(33.40)

( )
2

2 1
11 1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ; tani i

eq eq
i Ct Z I R I R I Z e I R e I

i C C C R
ωε

ω ω ω
Φ Φ −

−        = = + = − = = + Φ =              

 
 
We now can easily get the complex current, its maximum value, and the phase shift: 
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(33.41) 
( ) ( ) 1max max

2
2

1ˆˆ( ) ; tanˆ ˆ 1

i t
i t

i
eq eq

t e CI t e
RZ Z e

R
C

ω
ωε ε ε ω

ω

−Φ −

Φ

− 
 = = = Φ =
    +  

 

 

If we choose values of the preceding example with an added resistance:
max100 ; 500 / ; 150 ; 25R s V C Fω ε µ= Ω = = =  

We get 

2 2 1

max

80100 80 128 ; tan 0.675 38.7
100

150 1.17
128

Z

VI A

− −
= + = Ω = Φ = − = − °

= =
Ω

 
The current is out of phase with the voltage. 
(33.42) ( )( ) 1.17sin 500 0.675I t t A= +  

This example illustrates the 
essential concepts of this 
whole chapter. We can also 
easily see how this looks in 
the complex plane, in terms 
of phasors. 
All we have to find in each 
analysis of a circuit is the 
magnitude of the equivalent 
impedance ˆ

eqZ , and its 

phase Φ .  
Then we can calculate the 

current: 

(33.43) 

( )
max

max
max

ˆ( )ˆ( ) ˆ

ˆ

i t

eq

eq

V tI t I e
Z

VI
Z

ω −Φ= =

=
 

If the applied voltage is a sine function: ( )max( ) sinI t I tω= −Φ  
If the applied voltage is a cosine function: ( )max( ) cosI t I tω= −Φ  
The phase shift can be a positive or negative number. 
The phase shift plays a role in the calculation of the internal power delivered (lost) to the circuit. 
 
33.4a Taking voltages across the resistor in this RC-circuit: 
If we take the voltage across the resistor in an RC-circuit, we can simply calculate that voltage 
by our known rules: The output voltage is equal to the resistance times the current in the circuit: 

 

 

0.675Φ = −

R 

1
i Cω  

Complex plane of Gauss 

max
ˆ ˆ ˆi

eqV V e Z IΦ= =
imaginary   
axis  Y 

0.675ˆ ˆ 128i i
eq eq

iZ R Z e eCω
Φ −= − = = Ω

 

ˆ coseqZ RΦ =  
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If we take the voltage across the resistor we get for the maximum voltage: 

(33.44) 

( ) ( )
max max

, ,max 22
2

ˆ ˆ
1 1

R out R
CRV RI V R

R CR
C

ε ω ε

ω
ω

∆ = ⇒ ∆ = =
+ +

 

For ωCR=0.1  9.95% of the voltage passes through, for ωCR=1 we see that ,maxRV∆ = max

2
ε

. For 

ωCR=10 max
max

10 99.5%
101
ε ε= For a given CR high frequencies pass through easier than low 

frequencies. A setup like this which allows higher frequencies to pass through a circuit easier 
than lower frequencies is called a high-pass filter. 

33.5 Power loss in an ac-circuit; rms values: 
As we have now introduced a resistor we can also calculate the powerloss in any ac circuit. All 
ac circuits that include capacitors and/or coils have the characteristic that the current is out of 
phase with the voltage. This phase shift modifies the power loss to resistors. Without a resistor 
there is no power loss.  
Calculating the power loss of an ac circuit allows us also to introduce the concept of rms 
current and voltage, because we have to calculate the average power loss for a complete cycle. 
 
33.5a Average power loss in a circuit with resistors only: 
Let us first calculate the power loss for a circuit with just a resistor. Current and voltage are in 
phase with each other and vary as sin tω .The instantaneous real power in such a circuit is  
 

(33.45) 
2 2

max max( ) sinP t I V R I I V tω= ⋅∆ = ⋅ = ⋅∆ ⋅  
 
We need to find the average power delivered to this circuit during one or many complete cycles. 
For one complete period we have: 

(33.46) 2T π
ω

=  

The average value of  function over an interval of time is defined as : 

C 

~ 
Vmax 
 

max
max

eq

VI
Z

↑ =
 

 

R 

VR,out 
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(33.47) 
0

1 ( )
T

avf f t dt
T

= ∫  

We get  

(33.48) 
2

2 2

0 0

1 1 1sin sin
2 2

T

t dt d
T

π

ω θ θ
π

⋅ = ⋅ =∫ ∫  

(33.49) ( )

( ) ( )2 2

Math review :

cos sin cos sin  for n=2
1 1cos 1 cos 2 ;sin 1 cos 2
2 2

nine n i n iθ θ θ θ θ

θ θ θ θ

= + = + ⇒

= + = −

 

 
For the average power this means that : 

(33.50) 
( )

( )

2 2
2

max max max max
0 0

max max
max max

1 1 1sin 1 cos 2
2 2 2

1 1 2 0
2 2 2

P I V d I V d

I VI V

π π

θ θ θ θ
π π

π
π

= ⋅∆ ⋅ = ⋅∆ − ⋅ =

⋅∆
⋅∆ − =

∫ ∫
 

 

(33.51) max max
max max

1
2 2 2av rms rms

I VP I V I V∆
= ∆ = = ⋅∆  

where we made use of the concept of root-mean-square, rms. The average value of an 
alternating current or voltage is obviously 0. We customarily use the rms values instead. In ac 
discussions and measuring instruments we use these rms values, which are the values averaged 
over one period. 
When we are using 110 Volts of ac in a household, for example, we are using a rms voltage 
which has a maximum value of  
(33.52) max 2 2 110 Volts=1.41 110=155VoltsrmsV V∆ = ⋅∆ = ⋅ ⋅  
Similarly for currents: 

(33.53) max

max max
max0.707 ; 0.707

2 2rms rms
V IV V I I∆

∆ = = ∆ = =  

We saw in the previous chapter  any power loss in an RLC circuit always occcurs as –RI2. 
 
Why there is no average power lost in a purely capacitive  
We now can easily understand why  in any purely capacitive circuit  the average power is always 
0.  
The average power involves an integral over the product between the instantaneous voltage and 
current in a circuit. In purely capacitive circuits current and voltage are out of phase by π/2. This 
means that we always deal with the product between a cosine function and sine function without 
any phase shift, averaged over a complete period. This integral is always 0. 

(33.54) 
2

0 0

1 1sin cos sin cos 0
2

T

t t dt d
T

π

ω ω θ θ θ
π

⋅ ⋅ = ⋅ ⋅ =∫ ∫  



Dr. Fritz Wilhelm                                                                                                     page 12 of 23 
C:\physics\230 lecture\ch33 AC circuits.docx;  P 12/8/2009 S :12/8/2009 
 

 

If we have an ac circuit with a combination of resistors and capacitors, the current is out of phase 
from the voltage as we have just seen. (The same is true for ac circuits involving resistors and 
coils.) 
 
33.6 Power in an AC Circuit with current and voltage out of phase: 
The current in an ac circuit is out of phase with the voltage supplied. 

If max( ) sinV t V tω= then  ( ) ( )max
max( ) sin sinˆ

eq

VI t I t t
Z

ω ω= −Φ = −Φ  

The average power becomes: 

(33.55) ( ) ( )max max
0 0

1 1( ) sin sin
T T

avP V t I t dt V I t t dt
T T

ω ω= ∆ = ∆ ⋅ +Φ∫ ∫  

We expand  
(33.56) ( )sin sin cos sin cost t tω ω ω+Φ = Φ − Φ  
 

(33.57) 
( )

( )

max max
0

max max
max max

0

1 sin cos sin cos sin

1 1sin sin cos sin cos sin cos
2

T

av

T

P V I t t tdt
T

V IV I t t t t dt
T T

ω ω ω

ω ω ω ω

= ∆ Φ − Φ =

∆
∆ Φ − Φ = Φ

∫

∫

 

 
Note that it does not make any difference whether we use a positive or negative phase shift . 
The integral over the mixed trig terms is 0.  
 
Thus the average power delivered to the ac circuit is equal to: 

(33.58) 

2
max2

max max

ˆ1 cos cos cos
2 2

ˆcos  is called the power factor; cos

eq
av rms rms rms

eq

Z I
P P V I V I RI

Z R

≡ = ∆ Φ = ∆ Φ = = Φ

Φ Φ =
 

 
Now let us proceed to find the complex impedance ˆ

LZ  for a coil. 
33.7 Inductors in an AC circuit: 
If we look at the relationship between the applied ac voltage ( )ˆ tε  and the current ˆ( )I t inside of a 
circuit consisting only of an inductor we see that  the voltage across the coil is proportional to 
the negative derivative of the current. We recall that the voltage across a coil is given by the 
induced emf: 

(33.59) ( )
ˆ

L̂
dIV t L
dt

∆ = −  

For the whole loop we use Kirchhoff’s law: 

(33.60) ( )


( )
max

ˆˆ ˆ ˆ( ) 0 0
i t

L

e

dIV t V t t L
dt

ωε

ε+ ∆ = ⇒ − =  
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Thus, the relationship between the applied ac voltage and the current in the inductive circuit can 
be obtained through integration of (33.60) 

(33.61) 
( ) ( )

( )

max

max

ˆˆ

1ˆ ˆ( )

i t

i t

t
dI t dt e dt

L L

I t e t
i L i L

ω

ω

ε ε

ε ε
ω ω

= = ⇒

= =
 

 

 
Multiplying equation (33.61) by the impedance i Lω we get: 

(33.62) ( ) ˆ ˆˆ ( ) ( )t V t i LI tε ω= =  

Memorize: the complex inductive impedance ˆ
LZ  is:  

(33.63) ˆ
LZ i Lω=  

We write the complex impedance  in terms of a magnitude and an exponential : 

(33.64) 2ˆ i

LZ i L e L
π

ω ω= =  

(33.65) 
( )

2 2
max max

ˆ ˆ ˆ ˆ( ) ( )
L

i i ti tV Z I t i L I t e LI e LI e
π πωωω ω ω

+
∆ = = ⋅ = =

 
We see that the voltage leads the current. As the outside voltage is given, we express the current 
in terms of the voltage: 

(33.66) 
( ) ( ) ( )max 2

ˆ ˆˆ( ) ˆ
i t

L

t t
I t e

i L LZ

πωε ε ε
ω ω

−
= = =  

The current lags behind the applied emf. Let us study now an LR circuit. 
33.8 Resistor and inductor in series: LR-circuit: 
For example, let us say we have a resistor (R=30Ω) and a coil (L=0.900H) in series; 
ΔVmax=10.0V, ω=100/s. We apply Kirchhoff’s loop rule 

(33.67) 
( ) ( ) ( )
( ) ( )

ˆ

ˆ ˆ ˆ ˆˆ ˆ0 ( ) 0
ˆˆ ( )

eq

L R

Z

t V V t i LI t RI t

t i L R I t

ε ε ω

ε ω

+ ∆ + ∆ = ⇒ = + =

= +


 

The equivalent impedance is the factor in front of the complex current: 
 

  
( ) ( ) max

ˆ ˆ i tV t t e ωε ε∆ = =  

( )
ˆ

L̂
dIV t L
dt

∆ = −
 

( )1ˆ ˆ( )I t t
i L

ε
ω

=
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(33.68) ˆ
eqZ R i Lω= +  

  
we write our equivalent impedance ˆ

eqZ  in exponential form : 

(33.69) ( )22

magnitude of z

phase between V and I

tan =ˆ with 
1.25 71.2

i
eq

z

L
Z R i L R L e R

ω
ω ω Φ

=

Φ
= + = + =

Φ = = °




  

(33.70) 
( )

max max
max max22

10 0.106 ; 0.707 I 74.8
94.5 rms

eq

V V VI A I mA
Z R Lω

= = = = = =
Ω+

 

The current lags behind the voltage by the phase of 1.25rad or 71.2°. 
Here are the details :(33.71)

 ( ) ( )
( )

max

( )max max
22

1ˆ ˆ ( ) sin( ); tan =ˆ ˆ
i i t

eq eq

I

V LI t e t e I t t
RZ Z R L

ωε ωε ω
ω

− Φ −Φ ∆
= = → = −Φ Φ

+


 

 
 
 
 
 
 
 
 
 
 
 
 

  

  
( ) maxˆ i tt e ωε ε= ⋅  

ˆ
LZ i Lω=

ˆ
RZ R=  

 

 

1.25Φ =

R 

 

imaginary   
axis  Y       
        i Lω  

 

ˆ 94.5 i
eqZ R i L eω Φ= + =
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33.8a Taking voltages across an element in an ac-circuit; Low pass filter: 
 
Let us next find the maximum voltage across the resistor in this RL-circuit : 

 
We can see that the value of the inductive impedance regulates the amount of voltage across the 
resistor in such a circuit. This shows how we can filter the voltage. 
If ωL=0.1R 99.5% of the driving voltage passes through. If ωL=R max, max0.707R rmsV V V∆ = ∆ = ∆
If ωL=10R, only 9.95% of the original voltage passes through. 
This is why such a circuit which lets through more current at lower frequencies is called a low-
pass filter. 
 
 
33.9 Summary Rules: 
So, to sum up: when we analyse a circuit and want to find the currents in the various branches, 
we apply Kirchhoff’s rules and use the complex impedances for the voltage drops. We always 
get a relationship like: 

(33.72) ˆ ˆ ˆ
eqV Z I=  

 Combine any impedances in series to the equivalent impedance ˆeqz by using the sum of the 

impedances, ˆ ˆ ˆ;  are the complex impedances of resistors, capacitors, or coils.eq k k
k

Z Z Z=∑  

Combine impedances in parallel according to : 

(33.73) 1 2

1 2

1 2

ˆ ˆ1 1 1ˆfor two impedances: ˆ ˆ1 1ˆ
ˆ ˆ

p
eq k

Z ZZ
z z Z Z

Z Z

= ⇒ = =
++

∑  

 

(33.74)

Impedance of  a simple resistor Z
ˆImpedance of an inductor :

1ˆImpedance of a capacitor: 

R

L

C

R

Z i L

Z
i C

ω

ω

=

=

=

 

 

L 

~ 

maxε input voltage 

( )
max max22

1I V
R Lω

↑ =
+  

 

max max
max, max 2 2 2 2

1
R

RV RI
R L L

R

ε ε
ω ω

∆ = = =
+  +  

   
 

max,RV∆
output voltage 
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(33.75) 
( ) ( ) ( ) ( )

( )

1max
max

2 2

ˆˆ ˆ ˆ ˆˆ ; ; tanˆ ˆ

ˆ ˆ;

i t i t
eq

equ equ

equ equ

t Yt V Z I I e I e
XZ Z

Z X iY Z X Y

ω ωε εε −Φ −Φ −  = = = = = Φ =  
 

= + = +

 

This is essentially all you need to know.  Now we are ready to combine any number of passive 
elements in ac circuits and calculate the currents using Kirchhoffs rules and the results of the 
complex impedances just obtained :  
  
33.10 RLC in series in an ac driven circuit : 
This method is really a simplified and practical way of solving a differential equation of a 
damped oscillation driven by an outside voltage max sinV tω  .Applying Kirchhoff’s rules to such a 
RLC circuit we get: 

(33.76)
( )

( )

1ˆ ˆ ˆ ˆ ˆ ˆˆ

1 ˆˆ ( )

R L C
it V V V RI i LI I R i L I

i C C

t R i L I t
C

ε ω ω
ω ω

ε ω
ω

 = ∆ + ∆ + ∆ = + + = + − 
 

 = + − 
 

 

From equation (33.76) we 
see that the voltage is the 
sum of several complex 
terms on the right consisting 
of a number multiplied by 
the current. If this current is 
represented by the complex 
function max

i tI e ω we can 
easily represent all terms in 
a Gaussian complex plane, 
which is the same as the so-
called phasor diagrams. If 
we put the current 

0
max

ˆ iI I e= in the horizontal 
direction, by choosing t =0, 
we find the relationship of 

the remaining complex amplitudes by either using addition in the complex plane or by treating 
the voltages as two component vectors. Any imaginary portion corresponds to a vector in the y 
direction and any real portion correponds to a vector in the x-direction. We readily see that the 
resultant vector Vmax corresponds to the vector sum of the three R, L, C vectors. It makes an 
angle Φ with the vector for the current Imax. 
Example 1: 
Assume the following values: max300 / ; 150 ; 85 ; 22.0 ; 150s L mH R C F Vω µ ε= = = Ω = =  

 

 

Vmax 

Φ  
max

1i L I
i C

ω
ω

 + 
   

Complex plane of Gauss 

maxmax
ˆ i i

RLCV V e Z I eΦ Φ= =  

maxRI
 

imaginary   
axis  Y 

maxi LIω
 

maxiI
Cω

−
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2
2

1 1152 ; 45 ; 107

1 107137 ; tan ; 0.899 52
85

L L
C C

R L
C

ω ω
ω ω

ω
ω

= Ω = Ω − = − Ω

− + − = Ω Φ = Φ = − = − ° 
   

( ) (300 0.899)
max

150 ˆ1.09 ; 1.09
137

i tVI A I t Ae += = =
Ω  

 
Example 2: for a AC power source of 120V, a resistor of 75 Ohms, an inductor of 25mH, a 

frequency of 500Hz we got: 109 , tan = ; 1.047 46.3eq
LZ

R
ω

= Ω Φ Φ = = °  

The current is max 120 1.10ˆ 109
eq

V A
Z
ε

= =
Ω

The average power delivered to the circuit is therefore:

( )22 cos 75 1.10 cos 46.3 62.8RI A Wφ = Ω⋅ ° =  
 
 
33.11 Output voltages across the resistor, capacitor, or coil: 
We have a RLC circuit with a driving powersource of 150V

  
 

1
max425 ; 1.25 ; 3.50 ; 377 ; 150R L H C F s Vµ ω ε−= Ω = = = =  

(33.77) ( ) ( )
max

ˆ

ˆ
ˆ( ) 1( )

equ

i t

Z

V t
I t I e

R i L
i C

ω

ω
ω

−Φ= =
+ +



 

Determine the inductance (inductive reactance), the capacitance (capacitive reactance), and the 
equivalent complex impedance of the circuit. 
Inductance ωL=471Ω; capacitance=1/ωC =758 Ω 
 

(33.78) ( )1 1ˆ 425 471 758 425 1230eqz R i L R i L i i
i C C

ω ω
ω ω

 = + + = + − = + + = + 
 

 

The magnitude of the impedance is : 

  
( ) max

ˆ i tV t e ωε∆ =  

ˆ
LZ i Lω=

ˆ
RZ R=  

1ˆ
CZ

i Cω
=

1ˆ
eqZ R i L

i C
ω

ω
= + +
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(33.79) 
2

2 1ˆ 513eqZ R L
C

ω
ω

 = + − = Ω 
 

 

We get the maximum current: 

(33.80) max
max

150 0.292ˆ 513
eq

V VI A
Z
∆

= = =
Ω

 

The phase angle between current and voltage is given by Φ: 
(33.81)

 ( )1 1 1 1

1
471 758tan tan tan tan 0.6753 0.594 34

425

LY C radians
X R

ω
ω− − − −

 −  − Φ = = = = − = − = − °   
  

   
(33.82) ( )0.594ˆ( ) 0.292 i tI t e Aω +=  
 
The voltage across the capacitor is obtained by multiplying the current in the circuit with the 

capacitive impedance 1
i Cω

: 

(33.83) 

0.594
2max2

.max max

1 1ˆ ˆ ˆ ˆ ˆ

1 758 0.292 221

i ti

C C

C

IV Z I I Ie e
i C C C

V I A V
C

ππ ω

ω ω ω

ω

 + −−  
 ∆ = = = =

∆ = = Ω⋅ =

 

The voltage across the coil is  

(33.84) 
2

max max

ˆ ˆ ˆ ˆ ˆ

471 0.292 138

i

L L

L

V Z I i LI LIe
V L I A V

π

ω ω
ω

∆ = = =
∆ = ⋅ = Ω⋅ =

 

Note that voltages and currents are out of phase with the current across the capacitor (-π/2) and 
across the coil (+π/2). 
The average power across the capacitor or coil is ,

ˆ coseq C rms rmsZ V I∆ Φ =0 
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33.12 AC circuit with passive elements in parallel: 
 
R=75.0Ω, L=25mH, Vrms=120V;f=500Hz=3.1416E3/s 

 
 
 
 
 
 
 
 
 
 
 

( )2 2
max

max

max

ˆ ˆ 1ˆ ˆ ˆ ˆ ˆ( ) ; ; ;ˆ ˆ ˆ

1 0.01844 120ˆ; ; 54.24 ; 2.21ˆ ˆ 54.2

3.12

L
eq eq

L eq eq

equ rms
eq eq

Z R i LR R i L L iRV t Z I Z I
R i L i LR LRR Z Z Z

L R
I Z I A A

LRZ Z

I A

ω ε ω ω
ω ω ω

ωε
ω

+ −
= = = = = =

++

+
= = = = Ω = =

Ω

=

 

The currents in the two branches are: 

(33.85) 
( )max 2

ˆ ˆ( ) ( )ˆ ˆ and 
i t

R L
V t V tI I e

R i L L

πωε
ω ω

−
= = =  

Their maximum values are max, max,2.26 ;  2.16R LI A I A= = However, the current in the inductor 
branch is out of phase by π/2 with the current in the resistor branch. One is a cosine function, the 
other is a sine function: max, max,

ˆ ˆcos ; sinL L R RI I t I I tω ω= = . That is why the sum of their currents 
does not add up to the current in the main branch. We have to add the currents as complex 
functions: 

(33.86) 

( ) ( ) ( )

( )

2 2

max

1 1

ˆ ˆ 1 1 1 1ˆ ˆ ˆ ˆ ;

1
tan tan1

i t i
L R

t t
I I I t e e

i L R R i L R L

L R
L

R

ωε ε
ε ε

ω ω ω

ω
ω

Φ

− −

     = + = + = + = +     
     

− 
− Φ = =

 
 

 

(33.87) ( ) ( )2 2
max 2.26 2.16 3.12I A= + =  

 
  

  

 ˆ; LL Z i Lω=R

appε  

 

The instantaneous voltage across R 
and L is the same.  

ˆ ˆ
R app app

L app

I R V R

I i L

ε

ω ε

= ∆ =

=  

I →  LI →  

RI ↑  
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Let us next look at a circuit where all three components are in parallel.We find the equivalent 
impedance by adding the components in parallel: 

(33.88)

1 1 1
ˆ

ˆ1 1 ˆ;
ˆ

equ

eq

i C
R i LZ

i C I
R L z

ω
ω

εω
ω

= + + =

 + − = 
 

 

It is easier to leave the expression like this 
rather than solving for ˆeqz  
 
 
 

 (33.89)  

2

2

1

1 1 1 1 1
ˆ

1

tan 1

equ

i

equ

Z

i C C e
R L R LZ

C
L

R

ω ω
ω ω

ω
ω

− Φ   = − − = + −   
   

−
Φ =



 

 
We see that the maximum current is given by: 

(33.90) 
2

max max max2

1

1 1 1
ˆ

equ

equ

Z

I C
R LZ

ε ω ε
ω
 = = + − 
 



 

The voltage differences across all three elements are the same. The currents are, respectively: 

(33.91) 

;

ˆˆ ˆ  ; current leads by  over the applied voltage1 2

ˆ ˆˆ ; current lags by  with reference to the applied voltage
2

app
R

app
C app

app app
L

I
R

I i C

i C

I i
i L L

ε

ε πω ε

ω
ε ε π
ω ω

=

= =

= = −

 

  

  

1ˆ; CC Z
i Cω

=

ˆ; LL Z i Lω=

R
ε  
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33.12 Resonance in a Series RLC Circuit. 
 
The maximum current in a series RLC circuit is given by  

(33.92) 

2
2max

max
1; eq

eq

VI with z R L
Cz

ω
ω

∆  = = + − 
   

We get a maximum value for the current when the equivalent impedance is smallest, which is the 
case for : 

(33.93) 21 1L
C LC

ω ω
ω

= ⇒ =  

 
The corresponding frequency is called the resonance frequency: 

(33.94) 1
LC

ω =  

At the resonance frequency we have for the current in the circuit : 

(33.95) max
max

VI
R

∆
=  

 
33.14 Transformers and Power Transmission. 
A transformer consists essentially of a core of soft ferromagnetic iron, which increases any 
magnetic field inside it by a factor of a few hundred. There are two coils wound around this iron 
core, one, the primary coil is connected to an ac power source, which creates a huge magnetic 
field inside of the first set of N1 coils. This primary circuit is essentially a purely inductive 
circuit, with negligible resistance. It induces a time varying magnetic field. The voltage 
between its terminals are given by Faraday’s law: 

(33.96) ( )1
1 1 1 1 1;dV N A B t

dt
Φ

∆ = − Φ =  

This same field also passes through the secondary coil with N2 turns, creating a secondary 
voltage across its coil. This secondary circuit is connected to a load resistance R and a switch: 

(33.97) ( )1
2 2 1 1 1;dV N A B t

dt
Φ

∆ = − Φ =  

 

~ 
~ 
 N1 

 

ΔV1 
 
 

ΔV2 
 
 
 

R load 
resitor 
 
 
 

N2 
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If the magnetic field through each coil is exactly the same, the flux through one coil surface is 
also the same, the only difference is in the number of coils. By dividing the two equations we 
get: 
 

(33.98) 1 1 2
2 1

2 2 1

V N NV V
V N N

∆
= ⇒ ∆ = ∆

∆  

 
Depending on the ratio between the number of coils we can get a smaller or a larger secondary 
voltage, hence the name transformer.  
When the switch in the secondary circuit is closed, a current I2 is induced in the secondary. If the 
load in the secondary circuit is a pure resistance, the induced current I2 is in phase with the 
induced voltage V2. The power supplied to the secondary circuit must be supplied by the ac 
source connected to the primary circuit. In an ideal transformer where there are no losses (5 to 1 
% losses are typical.) the power supplied by the source is equal to the power in the secondary 
circuit. 
(33.99) 1 1 2 2I V I V∆ = ∆  
 
The value of the load resistance RL determines the secondary current: 

(33.100) 2
2

L

VI
R
∆

=  

Example:A transmission line has a resistance per unit length of 4.50E-4Ohms/m. It is to be used 
to transport 5.00MW over 500km. The output voltage of the generator is 4.50kV. What is the 
line loss if the voltage is stepped up to 500kV? What is the cost due to heat during one day if 
1kWhr costs 10cents?  
 
The current in the wire is 10A=Power/voltage. The resistance in the wire is R=225Ω, therefore 
the powerloss is RI2=22.5kW. During 24 hours the wire uses 22.5*24 kWhrs in energy, which 
costs $54. 
 
If one would try to transmit the power at the voltage of the generator the current in the wire 
would be:1.11kA, which would generate RI2 in heat. Per meter this would be 556Watts. This 
would melt the wire in short order. If the wire has a mass of copper of 1g/m, how long would it 
take to get it to melt? c for copper is 0.0924 cal/gCº. Melting point is 1083ºC. I takes 100cal or 
418 Joules to get to the melting point of copper for one gram, providing that the resistance of 
copper does not increase, which of course it does. This means it does not take even 1 second to 
get to th melting point, 0.75s. (The latent heat of fusion for copper is 134 J/g.) The resistivity of 
copper is 1.7E-8 Ohms/m. The temperature coefficient is 3.9E-3/Cº 
Remember that the resistance increases with temperature as 0( )

0
T TR R eα −=  

 
33.15 Rectifiers and Filters; refer to 33.7a and 33.4a : 
Many household devices require low voltage dc currents. They come with transformers, which, 
plugged into a 120 Volt ac outlet, transform the current down to typically 12 volt ac. In a second 
step the ac voltage gets changed into dc voltage by means of diodes. These diodes allow current 
to pass through only in one direction, thus cutting off the negative portion of a sine or cosine 
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wave. The resulting half wave sine curve can be smoothed out by adding a capacitor to the 
circuit. Remember that a discharging LRC circuit corresponds to a damped oscillation. Thus 
after the capacitor has been charged and it discharges through the resistor, the downward sine 

curve is overpowered by the exponential decrease of the charge according to 
t

RCe
−

. If we choose 
the RC value in such a way that it is equal to approximately T, the downward sine curve will just 
be an exponentially decreasing curve until the next upward (charging) branch of the sine curve is 
reached. In this way the sine curve is smoothed out to an almost constant current. At the next 
step certain frequencies need to be filtered out, which means that the amplitude of the voltages 
corresponding to the unwanted frequencies  should be made small. Just like the LR circuit 
discussed earlier, a CR circuit can be designed to filter out certain frequencies. 
 
 

 
For the current in the circuit we get: 

(33.101) ( )

2
2

max
2

2

1 1ˆ ˆ ˆ ˆ ;

ˆ
1

i
eq

i t

V Z I R R Ie
i C C

eI

R
C

ω

ω ω

ε

ω

Φ

−Φ

   ∆ = = + = +   
   

=
 +  
 

 

If we take the voltage across the resistor we get: 

(33.102) 

( ) ( )
max max

,max 22
2

ˆ ˆ
1 1

R R
R CRV RI V

R CR
C

ε ω ε

ω
ω

∆ = ⇒ ∆ = =
+ +

 

For ωCR=0.1  9.95% of the voltage passes through, for ωCR=1 we see that ,maxR rmsV V∆ = ∆ =

max0.707 V∆ . For ωCR=10 max
max

10 99.5%
101
V V∆

= ∆ For a given CR high frequencies pass through 

easier than low frequencies. We can therefore build high pass filters with CR circuits. 
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