$$
\begin{align*}
& \underbrace{\mu_{0} \vec{j}(t)=\operatorname{curl} \vec{B}(t)}_{\text {Ampere's law: }} \Rightarrow \underbrace{\frac{\partial \vec{B}}{\partial t}=-\operatorname{curl} \vec{E}_{L}} \tag{32.1}\\
& \text { Ampere's law: } \\
& \text { A time varying current creates } \overrightarrow{\mathrm{B}}(\mathrm{t}) \quad \begin{array}{l}
\text { Faraday's law: A time varying magnetic field } \\
\text { creates an induced }
\end{array}
\end{align*}
$$

$\mu_{0} I(t)=\oint_{\text {loop } I} \vec{B}(t) \cdot d \vec{s}=B l \Rightarrow B(t)=\frac{\mu_{0} I(t)}{l}$ Now use Faraday's law with this B:
$\Rightarrow \frac{d \Phi_{B}}{d t}=-\varepsilon(t) \Rightarrow$
$\varepsilon_{L}=-\frac{d \Phi_{B}}{d t}=-\frac{d}{d t}\left(\frac{\mu_{0} I(t)}{l} A\right)=-\underbrace{\frac{\mu_{0}}{l} A}_{\text {self-inductance } \mathrm{L}} \cdot \frac{d I}{d t}$
(32.2) $\varepsilon_{L}=-N \frac{d \Phi_{B}}{d t}=-L \frac{d I}{d t}$
(32.3)
$L=\frac{N \Phi_{B}}{I}$

$$
\begin{equation*}
\Delta V_{R}=-R I \text { and } \varepsilon_{\text {ind }}=\Delta V_{L}=-L \frac{d I}{d t} \tag{32.4}
\end{equation*}
$$

(32.5)

(32.6)
$\varepsilon_{1}=-M \frac{d I_{2}}{d t}$ and $\varepsilon_{2}=-M \frac{d I_{1}}{d t}$
Self inductance L:

1. A coil has an inductance of 3.00 mH , and the current in it changes from 0.200 A to 1.50 A in 0.200 s . Find the magnitude of the average induced emf in the coil during this time. -19.5 mV .
2. (3) A 10.0 mH inductor carries a current $I=I_{\max } \sin \omega t$ with $\mathrm{I}_{\max }=5.00 \mathrm{~A}$ and $\mathrm{f}=60 \mathrm{~Hz}$. What is the back emf as a function of time?
(18.8Vcos(377t)
3. (5) An inductor in the form of a solenoid contains 420 turns, is 16.0 cm in length, and has a cross-sectional area of $3.00 \mathrm{~cm}^{2}$. What uniform rate of decrease of current through the inductor induces an emf of 175E-6 V? ($-0.422 \mathrm{~A} / \mathrm{s}$)
4. (9) A self induced emf in a solenoid of inductance L changes in time as $\varepsilon=\varepsilon_{0} e^{-k t}$.Find the total charge that passes through the solenoid, assuming the charge is finite. $\left(\frac{\varepsilon_{0}}{k^{2} L}\right)$.

RL circuits:
5. (11) A 12.0 Volt battery is connected into a series circuit containing a 10.0 Ohm resistor and a 2.00 H inductor. How long will it take the current to reach 50% and 90% of its final value? ($0.139 \mathrm{~s} ; 0.461 \mathrm{~s}$)
6. (17) An inductor has an inductance of 15.0 H and a resistance of 30.0 Ohm is connected across a 100-Volt battery. What is the rate of increase of the current at $\mathrm{t}=0 \mathrm{~s}$ and at $\mathrm{t}=1.50 \mathrm{~s}$. $(6.67 \mathrm{~A} / \mathrm{s} ; 0.332 \mathrm{~A} / \mathrm{s})$

Energy in a magnetic field:
7. Calculate the energy associated with the magnetic field of a 200 turn solenoid in which a current of 1.75 A produces a flux of $3.70 \mathrm{E}-4 \mathrm{~Wb}$ in each turn. (0.0648 J)
8. (25) On a clear day at a certain location, a $100 \mathrm{~V} / \mathrm{m}$ vertical electric field exists near the Earth's surface. At the same place, the Earth's magnetic field has a magnitude of $0.500 \mathrm{E}-4 \mathrm{~T}$. Compare the energy densities of the two fields. ($\left.u_{E}=44.2 n \quad \mathrm{Jm}^{3} ; u_{B}=995 \mu \mathrm{~J} / \mathrm{m}^{3}\right)$.
9. An RL circuit in which $\mathrm{L}=4.00 \mathrm{H}$ and $\mathrm{R}=5.00$ Ohms is connected to a 22.0 Volt battery at $\mathrm{t}=0$. a) What energy is stored in the inductor when the current is 0.500 A b) at what rate is energy being stored in the inductor when $\mathrm{I}=1.00 \mathrm{~A}$; c) What power is being delivered to the circuit by the battery when $\mathrm{I}=0.500 \mathrm{~A}$?
(a) $\mathrm{U}=0.500 \mathrm{~J}$ b) 17.0 W ; c) 11.0 W

Mutual Inductance:
10. (30) Two coils are close to each other. The first coil carries a time-varying current given by $I(t)=5.00 A e^{-0.0250 t} \sin 377 t$. At $\mathrm{t}=0.800 \mathrm{~s}$, the emf measured across the second coil is -3.20 V . What is the mutual inductance of the coils? $(1.73 \mathrm{mH})$.

Oscillations in an LC-circuit:
11. (38) An LC-circuit consists of a 20 mH inductor and a $0.500 \mu \mathrm{~F}$ capacitor. If the maximum instantaneous current is 0.100 A , what is the greatest potential difference across the capacitor? (20.0 V)
12. (41) A fixed inductance $\mathrm{L}=1.05 \mathrm{E}-6 \mathrm{H}$ is used in series with a variable capacitor in the tuning section on a ship. What capacitance tunes the circuit to the signal from a transmitter broadcasting at 6.30 MHz ? $(608 \mathrm{pF})$.
13. An LC-circuit (in series) with a open-close switch contains a 82.0 mH inductor and a $17.0 \mu \mathrm{~F}$ capacitor that initially carries a charge of $180 \mu \mathrm{C}$. The switch is open for $\mathrm{t}<0$ and then closed at $\mathrm{t}=0$. a) Find the frequency in Hz of the resulting oscillations. At $\mathrm{t}=1.00 \mathrm{~ms}$, find b) the charge on the capacitor and c) the current in the circuit. a) 135 Hz b) $119 \mu \mathrm{C}$ c) -114 mA .
RLC circuits:
14. (45) Consider an LC circuit in which $\mathrm{L}=500 \mathrm{mH}$ and $\mathrm{C}=0.100 \mu \mathrm{~F}$ a) What is the resonance frequency ω_{0};b)If a resistance of $1.00 \mathrm{k} \Omega$ is introduced into the circuit, what is the frequency of the damped oscillations c) What is the percent difference between the frequencies? a) $4.47 \mathrm{E} 3 / \mathrm{s}$; b) $4.36 \mathrm{E} 3 / \mathrm{s}$; c) 2.46%.

