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32.1 Self-inductance in a circuit.  
Faraday’s law has important consequences for electric circuits. Every circuit is a loop, and a 
time changing current will therefore produce a back-emf. Consider a simple circuit 
consisting of a resistor R, an emf ε, and a switch. When we turn  the switch on the current 
increases slowly from 0 to a maximum value. The current is obviously varying with time. The 
magnetic field created by this time varying current is also increasing with time. According  
Faraday’s law

 

 this magnetic field creates a time varying emf and a time varying induced current 
in the same loop, which goes against the original current, due to Lenz’s law.  

(32.1) ( ) ( )0 0( ) ( )
A

curlB t j t B t ds I tµ µ
∂

= ⇒ ⋅ =∫
 







 
(32.2) 0

0
( )( ) I tBl I B t

l
µµ= ⇒ =  

which will induce an emf Lε in the same circuit according to Faraday’s law: 

(32.3) ( ) ( ) ( )


0 0

inductance Lrate of magnetic flux through 
the loop of the circuit

B
L

d t I t Ad dIt A
dt dt l l dt

µ µε
Φ

= − = − = −


 

 
For simplification and demonstration 
purposes I have multiplied B on the left 
side in (32.2) with the length of the 
closed path. Therefore, we see easily 
that the magnetic field (32.2) in this 
process of self-induction is 
proportional to the original time-
varying current.  
It is this same magnetic field which 
enters Faraday’s law on the right side 
of (32.3)  
 
We see that the emf of self-inductance 
is proportional to the rate of change of 

the original current.  
We introduce the new quantity L, the inductance of the circuit, as the proportionality factor 
between the emf and the rate of change of the original current

(32.4) 

. For a coil with N tightly 
wound loops the flux through N loops is equal to N times the flux through a single loop. An emf 
is created in each single loop, and the total emf is the sum of all the emfs. There is only one 
single current, therefore: 

B
L

d dIN L
dt dt

ε Φ
= − = −  

 
The self induced emf Lε is always proportional to the rate of change of the original current. 
(Note that from now on we avoid the letters “l” or “L” for lengths. We reserve the letter L for 
self-inductance.) 

R 

ε  

( )  original currentI t ↑  ( )indI t↑  

indε induced emf 

clockwise ( )B t


created by original current 
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From (32.4) we get:  
(32.5) BNd LdIΦ =

  
The change in flux is directly proportional to the change in current.When there is no current 
there is no flux, and vice versa. Integrating, we get  

(32.6) B
B

NLdI Nd L
I
Φ

= Φ ⇒ =  

 

 (32.7) BNL
I
Φ

=  

 
To summarize: the time varying current I(t) in a circuit creates a time varying magnetic 
field B(t) in the circuit (Ampere’s law). The time varying magnetic field induces a time-
varying back-emf (Faraday’s law) and an induced current in the circuit.  
Both, the self induced emf Lε and the induced current Iind are directed against the original 
emf ε and the original current I that created them.  
 
Example 32.1: Find the  inductance of a uniformly wound very long solenoid having N turns 
and length h. (We use the letter h for length instead of L which is now reserved for the 
inductance.)

 
 
From Ampere’s law we know: 0 0curlB j Bh NIµ µ= ⇒ =




 
Recall that in the calculation of the magnetic field the Ampereian surface for which we 
calculated the flux of the current density was a rectangular surface with its long side parallel to 
the magnetic field inside the solenoid. In the figure above  we call this surface A1. 

(32.8) 0 0( ) ( ) ( )NB t n It I t
h

µ µ= =
 

I 

N wires intercept the surface A1 0 0( ) ( )NB t nI I t
h

µ µ= =  

I 

B →


 

0B =


 
 

0B =


 

2 0L
N dI dINA L
h dt dt

ε µ= − = −

 

A2 
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In order to calculate the emf induced by the time changing magnetic field we calculate the flux 
of this magnetic field through N surfaces created by the N turns of wire. Each of these 
surfaces is perpendicular to the Ampereian surface. We should call them Faraday surfaces. The 
circulation around each such loop creates a back-emf, which is equal to the time changing 

magnetic flux through this loop. B
i

d
dt

ε Φ
= − . For N loops we get a total back-emf: 

(32.9) 
1

N
B

i
i

dN
dt

ε ε
=

Φ
= = −∑  

The magnetic flux for a single loop of wire is equal to the magnetic field inside the solenoid 
times the surface of one single loop of wire or  2A B . Therefore, 

(32.10) 


2
2 20 22 2

0 0 2 0
Volume
of the interior
solenoid.

B N AN NA B NA NL I n A h n V
I I I h h

µµ µ µΦ
= = = = = =  

(32.11) 
2

0solenoidL n Vµ=  
By introducing a ferromagnetic material into the solenoid the self-inductance can be greatly 
increased, because it strengthens the magnetic field. This effect gets absorbed in the value for 0µ  
which then is not the permeability of empty space, and is called μ without the 0.. 
 
Let us calculate the inductance L for the solenoid directly from Faraday’s law: 

2 22

2 2 2 0
A AA

d dB N dIcurlE dA E ds B dA NA NA
dt dt h dt

µ
∂

⋅ = ⋅ = − = − = −∫∫ ∫ ∫∫


   







 

The line integral of the induced electric field must be taken N times for each loop. For a tightly 
wound solenoid it is equal to  

(32.12) 
2

2 B
L i

A

d dIN E ds rNE N L
dt dt

ε ε π
∂

Φ
= = ⋅ = = − = −∑ ∫







 

The flux-integral yields N times the magnetic flux through a simple surface, which is the circular 
loop created by a single circular loop of wire: 

(32.13) 
2

2 2 0
A

d dB N dIB dA NA NA
dt dt h dt

µ− = − = −∫∫


  

With the definition of  

(32.14) L
dIL
dt

ε = −  

we get the result in (32.11):  

(32.15) 2 22
2 0 0 0 2 0L

AdI N dI N NL NA L N hA n V
dt h dt h h h

ε µ µ µ µ= − = − ⇒ = = =  

 
32.2 RL-Circuits. 
Solving the equations of an RL dc circuit during start-up and shut-down: 
Let us further study what happens in a dc-circuit with a resistor R. (All circuits have a resistance, 
whether we explicitly include a resistor or not.)   
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32.2a Charging the capacitor: 
When we close the switch in such a circuit, allowing a current to flow, the current will not 
immediately flow with its maximum value. It is growing from 0 to its maximum value ε/R. This 
means of course that the current changes with time, which again means that during this time a 

back-emf is established in the circuit according to Faraday’s law: L
dIL
dt

ε = − . The emf acts 

against the original current according to Lenz’s law. When, after the current has reached its 
maximum value, we remove the original power source ε, the current will decrease and again 
cause a back emf, this time to oppose the current’s  decrease. 

  
Just like the resistance R was a measure 
of the opposition to the current V RI∆ =
so is the inductance L a measure of the 
resistance to the change in the original 

current L
dIL
dt

ε = − . Both quantities ΔV=-

RI and  L
dIL
dt

ε = −  (energies per unit 

charge) will reduce the voltage supplied by 
the  original outside power supply. We still 
have energy conservation when we 
complete the loop of a circuit. The power 
supplied by the outside source ε equals the 
power used by the circuit. 

 
When the switch is closed in the circuit above with a power supply ε  the current in the circuit 

increases from 0 to its maximum value 
R
ε .  

We apply energy conservation to the whole loop and get a familiar differential equation:   
We need to solve our equation for I(t). Let us first do this through simple separation of the 
variables: 

(32.16) 

0dI dIRI L L RI
dt dt

dI dt dI R dt
RI L LI

R

ε ε

εε

− − = ⇒ − = −

= − ⇒ = −
− −

 
We get the solution of an exponentially increasing current with the time-constant L

R
τ =  

0( ) 1 0
tR t

L IdII t e e
R dt

τε
τ

−− ⋅ 
= − ⇒ = > 

 
 

After a time of 4.6τ the current reaches 99% of its maximum value of 
R
ε . Let us check this: 

R 

ε  

( )I t ↑
 

( )indI t↑  

indε  

 is closed, current increases

( ) induced (clockwise)

Switch

B t
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(32.17) 
0.99 1 0.99 1 0.01

ln100 4.6

R R Rt t t
L L Le e e

R R
R t t
L

ε ε

τ

− ⋅ − ⋅ − ⋅ 
= − ⇒ − = − ⇒ = 

 

= ⇒ =

 

During this time we have an increasing current ( )I t , therefore also a time varying  magnetic 

field, therefore a self-induced emf. ind
dIL
dt

ε = −
 
Therefore, the polarity of the induced emf is 

opposite to the original emf. While the induced current is flowing, power is being delivered to 

the magnetic field which builds up in the coil because of 21
2L B

dIP I L I U LI
dt

ε= = ⇒ = . At the 

same time power is being dissipated in the resistor as heat according to 2P RI= .
  

32.2b Different method to solve the differential equation (32.16):  

(32.18) dIL RI
dt

ε= − +  

We first recognize that the d.e. contains a constant. The general rule for solving d.e.’s says to 
first solve the d.e. without the constant and then to add a special solution which satisfies the 
equation with the constant. The d.e. without the constant is easily solved: 

(32.19) ( )
Rt
LdIL RI I t Ae

dt
−

= − ⇒ =  

A special constant solution is given by I
R
ε

= . You can verify that by putting that solution into 

the original d.e. 0 R
R
ε ε= − +

 
Our general solution is therefore obtained by adding the special 

solution to the general solution to yield: 

(32.20) 
Rt
LI Ae

R
ε−

= +  

Now, we apply the initial condition that the current is 0 at t=0 and get: 

(32.21) 0 A A
R R
ε ε

= + ⇒ = −  

This gives as the same solution we obtained before:(32.22) ( ) 1
R t
LI t e

R
ε − ⋅ 

= − 
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32.2c Discharging the coil: 
When, after a while, we disconnect the 
power source, the current in the circuit will 
not go to 0 in an instant but will also 
decrease exponentially. It is again impeded 
by the induced emf which this time opposes 
the decrease of the current. We can see this 
again by solving the differential equation of 
the circuit (which has been energized 
previously) after the power supply has been 
removed.  
The switch in the circuit is now closed. The 
current now decreases because it dissipates  
energy in the resistor and no more outside 
power is being supplied. 

0B
t

∂
<

∂



the polarity is again reversed. 

(32.23)
0

0

0

0
t t

dI dI LRI L dt
dt I R

IdII I e e
dt

τ τ

τ
− −

+ = ⇒ = − ⇒

= ⇒ = − <
 

(The time constant R
L

τ = ) 

Summing this up, we need to introduce a new self induced emf into any circuit containing a time 
varying current. This is done by adding an inductor coil into the circuit, usually symbolized by a 
spiral along the circuit, with the value L for its inductance. In this way, the whole analysis gets 
reduced to writing down Kirchhoff’s rules for the circuit as an instantaneous equation. Just like 
with the voltage drop across a resistor we have an emf drop across such an inductor coil. 
As the origin of the voltage ultimately does not matter, we also talk about a voltage drop across 
an inductor coil: 
 

(32.24) R ind L
dIV RI and V L
dt

ε∆ = − = ∆ = −  

 
32.3 Energy in a Magnetic Field. 
We start again with an LR circuit containing an emf. The instantaneous Kirchhoff rule reads like 
the electric energy conservation. (We used Kirchhoff's laws so far mostly for dc-currents. They 
are just a convenient summary of the laws of charge and energy conservation, which must hold 
for any circuit, including those with time varying currents and voltages. This is why we call 
Kirchhoff's rules now "instantaneous.") 

(32.25) 0dIRI L
dt

ε − − =  

R 

ε
 

( )I t ↑
 

( )indI t↓  

( ) induced (ccw)B t


 

indε  

 We close the switch 

after I=I0 =
R
ε  
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The energy of the emf will go to the resistor, where it is dissipated as heat, and the coil, where it 
is stored in the magnetic field. To get the rate of change of energy in the circuit, i.e. its power we 
simply multiply (32.25) with I. ( Power I V Iε= ∆ = ) 

(32.26) 




2

power delivered to the 
resistor power delivered to 

the inductance= BdU
dt

dII RI LI
dt

ε = +  

(32.27) Lpower delivered to the inductor coil P BdU dILI
dt dt

= =  

Integrating this over time:  
 
  

 (32.28) 21
2BdU LIdI LI= =∫ ∫  

 (32.29)
21

2BU LI=  

Recall that the energy in the capacitor was equal to  

(32.30) ( )
2

21
2 2C

QU C V
C

= ∆ =  

which allowed us to calculate the energy density in the empty space between the plates of a 
parallel plate capacitor as: 

(32.31) 
2

0
1
2Eu Eε=  

For the magnetic energy inside the space of a solenoidal coil we need L from (32.11). 
(32.32)     2

0L n Vµ=  
For the current in the coils of the solenoid, expressed by the magnetic field we use: 

(32.33) 0
0

BB nI I
n

µ
µ

= ⇔ =  

Inserting L and I into (32.29) gives us : 

(32.34) 
( )

2
2

0
0

2

0

1
2

2

B

B

BU n V
n

BU V

µ
µ

µ

 
=  

 

=

 

It follows that the magnetic energy density B
B

Uu V= inside a coil is given by : 

(32.35) 
2

02B
Bu
µ

=  

 
32.3a Energy in a coaxial cable: 
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In a coaxial cable the inner thin cylindrical cable carries the current from the source and the outer 
thin cylindrical cable carries the current back to the source, thus closing a loop. The inside of the 
inner cylindrical cable has no magnetic field (Ampere’s law.) On the outside of the outer cable 
there is also no magnetic field as the total current through a cross-section of the cable is 0. The 
only magnetic field exists between the two cable surfaces. We have seen earlier that the magnetic 
field outside of a conduction wire curls around the wire (inner cylinder) and is equal to  

(32.36) 0
0( )  from Ampere's law: 2

2
IB r rB I
r

µ π µ
π

= =  

In order to calculate the energy  

(32.37) 21
2BU LI=  

contained in the magnetic field of the coaxial cable we need to find the inductance L of the cable: 
which is given by : 

(32.38) BNL
I
Φ

=  

This is in connection with Faraday’s law, which uses surfaces perpendiclar to the surface used in 
determining the magnetic field in Ampere’s law. Call them the Faraday surfaces. 
We need the surface through which the magnetic field flows and around which a current and emf 
is being created: 

(32.39) 
A A

E ds B dA
t∂

∂
⋅ = −

∂∫ ∫∫
 







 

So, we need to calculate the flux of the magnetic field 0( )
2

IB r
r

µ
π

=  through a rectangular cross-

section of the cable (along the cable, not perpendicular to it), in which the magnetic field is 
tangential to the concentric circle around the inner cable with radius r>a (where a is the inner 
radius of the inside cable.) (Don’t confuse the coaxial cable with a solenoid!) The total Faraday  
surface is the rectangle of width (b-a) and length h. The magnetic field is perpendicular to that 
surface and  varies with the distance r from the central axis of the concentric cylinders. The small 
area dA(r) of the cylindrical surface lies at a distance r from the center line and has the thickness 
dr. Its length is the length of the cable h, thus ( )dA r hdr=  

 
 

0( )
2

IB r
r

µ
π

=  

Bthe area of the flux d  
corresponds to the height of the 
cable (length) times the radial 
increment dr.

BhdrΦ =

 

h 

r 
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We get for the flux: 

(32.40) 0 0 ln
2 2

b

B
a

I Ih bhdr
r a

µ µ
π π

Φ = =∫  

For L we get : 

(32.41) 0 ln ; 1
2

B N hN bL N
I a

µ
π

Φ
= = =  

Fo the total magnetic energy stored in the coaxial cable we get : 

(32.42) 
2

2 01 ln
2 4B

hI bU LI
a

µ
π

= =  

 
 
32.5 Mutual Inductance: 
If we have a time varying current I1 in circuit 1, and a time varying current I2 in an adjacent 
circuit 2, I1 will induce an emf in circuit 2 and I2 will induce an emf in circuit 1. We talk about 
mutual inductance M. 
If we have a time-varying magnetic field 1( )B t



 (from a time varying current) then obviously the 
field creates a flux through any closed surface, not just through the one responsible for its field 
(which leads to the self inductance L we just discussed.) 
If there is another closed loop with a surface  close by then, the magetic field will create a flux 

12Φ and therefore an induced emf 2ε in that loop also, and then vice versa.  

B intercepts area dr∙h 

0

2

Bd B h dr
I h dr
r

µ
π

Φ = ⋅ ⋅ =

⋅ ⋅
 

central conductor with current I 

B intercepts area dr∙h 

Bd B h drΦ = ⋅ ⋅  

( )B r


circles around the central conductor 
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The magnetic field 1B


 created by the left loop intercepts the right loop, creating a magnetic flux

12Φ of the magnetic field 1B


through the surface 2A


. 
If we have a time dependent current and magnetic field the change in flux will create an emf 2ε
in the second loop.  

(32.43)

( )
12

1
2 2 1 2 12

12

which provides the definition of the 
mutal inductance 

dIdN B A M
dt dt

M

ε
Φ

= − = −




 

 
Obviously, the magnetic field 2B



created by the current 

2I in the second coil, will create a flux through the first 
loop 21 2 1B AΦ =



and therefore also an induced emf 1ε  . 
We define the mutual inductance accordingly: 

(32.44)

( )
21

2
1 1 2 1 21

21

which provides the definition of the 
mutal inductance 

dIdN B A M
dt dt

M

ε
Φ

= − = −




 

It turns out that the two mutual inductances are equal 
and we don’t need to distinguish between them. 
(32.45) 12 21M M M= =  
The mutual inductance depends on the shape and make 

of the coil. Thus, each coil creates a new emf in the other coil: 

(32.46) 2 1
1 2

dI dIM and M
dt dt

ε ε= − = −  

The mutual inductance has the same form as the self-inductance. It plays a role in transformers, 
which we shall discuss later. 
 
 
 
 

1 1; with IN turns
 

2 2 turns in coil 2; with IN
 

( )1B t


 
12 1 2B AΦ = ⋅



 

( )1B t


 

1 1

1

 turns in coil 1; with I

and surface A

N
                     

2A


 

1 1; with IN turns  

2 2 turns in coil 2; with IN
                    2A
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32.5 Oscillations in an LC circuit. 
Let us consider a simple circuit with a capacitor C, a coil L, and a switch. The capacitor is 
originally fully charged and the switch is open. When we close the switch a time-varying 
current runs through the circuit, which will induce a back emf in the coil. The mathematical 
expression of this time varying charge is the solution of a differential equation. We bear in mind 
that the energy of the capacitor decreases as the energy of the coil increases, and vice versa. We 
can use the energy approach, noticing that the total energy in the circuit remains constant as there 
is no resistance R in the circuit: 
 

(32.47) ( )
2

2( ) 1 constant
2 2

Q tU LI t
C

= + =  

The time derivative is 0 because there is no 
dissipation of energy in a resistor : 

(32.48)

2

20 0

(after dividing by I=dQ/dt)

Q dQ dI Q d QLI L
C dt dt C dt

+ = = + =  

 
 

 
This is a differential equation of the second order in Q, just like the d.e. of a spring: 
(32.49)  

1 0 0kQ Q x x
LC m

+ = ⇔ + =

  

We arrive at the same equation by simply writing down Kirchhoffs rules for a circuit without R 

and powersupply: 1 10 0 0dI QL LQ Q Q Q
dt C C LC

− − = ⇒ + = ⇒ + =   

32.5a Solving d.e. by using complex functions: 
This is a good time to review how we solve such equations with complex numbers. You can 
check out the paper ch32Complex Oscillations on the website (Do it, you will need it!). We will 
make extensive us of  this in the following two chapters. It is not covered in your text book. 
 
Use the complex trial solution 
(32.50) ( ) 0 0

ˆ (cos sin )i tQ t Q e Q t i tα ω ω= = +  
Use the fact that the derivative of an exponential function turns into a multiplication : 

(32.51) 

( ) ( )

( ) ( ) ( )

0

2
2 2

02

ˆ
ˆ

ˆ
ˆ ˆ

i t

i t

dQ t d Q e i Q t Q
dt dt

d Q t d Q e i Q t Q
dt dt

α

α

α

α α

= = =

= = = −



 

With this equation (32.49) becomes : 
(32.52) ( ) ( )2 2

0 0
ˆ 0Q tα ω α ω− + = ⇒ = ±  

Using the initial condition that Q(t=0)=Q0 we get the familiar solution to (32.49): 

21
2BU LI=

 

2

2C
QU
C

=  
I 
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(32.53) 
2

0 0 0
1cos ;  with Q Q t

LC
ω ω= =  

We could have also just written down Kirchhoffs rules for this circuit : 

(32.54) 

2

2

2
0 0 0

0 0

1 10 ( ) cos( ) with 

dI Q d Q QL L
dt C dt C

Q Q Q t Q t
LC LC

ω ϕ ω

− − = ⇒ + = ⇒

+ = ⇒ = + =

 

Compare these equations and solutions with the equations for the oscillations of a spring : 

(32.55) ( )2
0 0 00 coskx x x x x x t

m
ω ω ϕ+ = + = ⇒ = +   

 
The potential energy of the spring corresponds to  

(32.56) 
2

21
2 2

Qkx
C

⇔  

The kinetic energy of the spring corresponds to the energy of the coil : 

(32.57) 2 2 2 21 1 1 1v
2 2 2 2

m mx LQ LI= ⇔= =  

 
 
32.6 The RLC circuit (without exterior power source). 
 
If we introduce a resistor R ( V RI∆ = − ) into the circuit above (no emf) we get the situation 
analogous to that of the spring with a damping factor b ( F bv= − ). The circuit now loses energy 
according to –RI2, just like the spring loses energy according to –bv2. Starting with a fully 
charged capacitor, corresponds to starting the spring with its maximum potential energy. 
By using the same process as before we get the d.e. 

(32.58) ε
2

20 0dI Q d Q dQ QRI L L R
dt C dt dt C

− − − = ⇒ + + =  

(32.59) 1 0RQ Q Q
L LC

+ + =   

 
Use the trial solution: 2

0 ;i tQ Q e Q i Q and Q Qα α α= ⇒ = = −   
This leads to the quadratic equation in α (Learn how to do this!): 

(32.60) 2 2
0 0Ri

L
α α ω− + + =  

(32.61) 

1

2
2

202
2
0

4

2 2 2

R Ri R RL L i
L L

ω

ω
α ω

± − +
 = = ± − 
 



 

(32.62) ( ) ( )12 2
0 0 0 1 1cos sin

R Rt i t ti t L LQ t Q e Q e Q e t t
ωα ω ω

− ± −
= = = ±  
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(32.63) 
 

2
0

/

0

1 0

b m

dI QL RI
dt C

RQ Q Q
L LC

ω

+ + = ⇒

+ + = 

 

This equation corresponds to the spring equation: 

(32.64) 0b kx x x
m m

+ + =   

Obviously, we get the same solution which is a damped oscillation : 

(32.65) 
2

2 22
0 1 1 0 0cos ; ;

2

b t
m b kx x e t

m m
ω ω ω ω

−  = = − = 
 

 

Comparing the two differential equations we just need to establish a correspondents between the 
constants: 

(32.66) 

2
0

1

b R
m L
k
m LC

ω

→
→

= =

 

Thus : 

(32.67) 
2

2
0 1 1

1( ) cos ;
2

R t
L RQ t Q e t

LC L
ω ω

−  = = −  
 

 

Energy is lost by this circuit to the tune of 2vb− in terms of the spring’s constants. This translates 
to the LC circuit as: 
(32.68) 2 2RQ RI− = −  
just as we expected.  
Let us double check this by starting with the instantaneous energy of a circuit which is given 

by:(32.47)
2

21
2 2
QU LI
C

= +  

In the case of the LC circuit this energy is constant. In the case of the LRC circuit we know that 
energy is lost in the resistor: 

(32.69) 


2
21 1( ) 2 2

2 2 2 2I

dU d Q L Q QLI QQ II I LII I LI
dt dt C C C C

 = + = + = + = + 
 

     

Looking at the original differential equation 0QRI LI
C

− − − = we see that the term in parentheses 

is equal to –RI. Therefore, the change in total energy of the circuit is equal to the energy loss to 
heat or internal energy: 

(32.70) 
2

RI

dU QI LI RI
dt C

−

 = + = − 
 





 


