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Carl Friedrich Gauss introduced complex numbers: In the complex plane the y-axis is the 
imaginary axis and the x-axis is the real axis. Any complex number z can then be written 
in terms of its real part plus its imaginary part: 

(1.1) ( )
ˆ
ˆ cos sin  Euler formulai

z x iy
z r i re θθ θ

= + ⇒

= + =  

 One can easily prove Euler’s formula by expanding the exponential function ex  in a 
McLaurin power series, and then substituting x with iθ. We must just use that i2 =-1; i3 =-

i; i4 =1; i5 =i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Complex numbers 
help us to find all 

solutions of an algebraic equation like, for example: x3 =-1. 

x
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(a, b)
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b 

Complex plane of Gauss 

All we have to do is write our number, real, or complex, in terms of an exponential: (1.2) 

( )( )
( ) ( )

( )

3 2

1 2 2 0
2 3 3 3 3

0

2
3

1

2

ˆ 1  for n=0,1,2,3... then we take the third root of this equation and take all
non repetitive solutions into account.

ˆ)  = ; 0

ˆ) ; 1

ˆ)

i ni

n
i i ii n

i i

i

z e

a e e z e e n

b z e e n

c z e

π π

π π π π π
π π

π π
π

+

+ +
+

+

= − =

⇒ = = =

= = =

=
( )4 5

3 3 ; 2 we have three unique solutions, which can of course also 
be written in trigonometric and algebraic formats.

i
e n

π π π+
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The same can be done for any equation of the form   
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(1.3)

( 2 )

2 2

ˆ)
First, write a+ib in terms of an exponential function r ; 0,1, 2...

) ( ) ( )

) arctan
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(1.4)

( )

( )

22 2 1

21

ˆ   tan  in radians

ˆ ; 0,1, 2,3... 1

i kn
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k
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(1.5)

( ) ( )

3 2 2

1 ( 0.93 2 )
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1 ( 0.93)
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4ˆ: 3 4 ; 3 4 5; arctan 0.92795218 0.93
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1 ( 0.93 4 )
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2
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i i

i i

z e e i i
π− +

− + = − +
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The complex conjugate z* (z-star) number of a complex number z is obtained by turning 
all signs of the imaginary unit into their opposite: +i becomes –i and vice versa. 
 

(1.6)
2 2

ˆ ˆ; ;  
We define the norm (or magnitude) of a complex number as:

ˆ ˆˆ

i iz a ib re z a ib re

z zz a b r

θ θ∗ −

∗

= + = = − =

= = + =

 

Rationalization of the denominator: 

(1.7) 

* 2 2
1

* 2 2 2 2 2 2

2 2

ˆ1 1) ;  ;
ˆˆ

1 1)

i

i
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b e
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β

β
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=
+ +

tan b

 

 
Some interesting properties are a consequence of Euler’s formula (1.1): 
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(1.8)  
( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
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)binomial coefficients:  for k 0 and 0 for k=0
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1; 2; 1; 1
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Recall the power expansion of a function into a McLaurin series: 
 

(1.9)
( ) ( ) ( ) ( ) ( )

0
( ) 0 ;  with 0 0

!
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k k

k
k

d f xxf x f f x
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∞

=

= ≡∑ =  

 
which is the special case of the Taylor series, expansion around the point a: 
 

(1.10)
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0
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The expansion for ex is then: 

(1.11)

2

2 3 4 5 6 7 8

) 1  and 
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2 3! 4! 5! 6! 7! 8!

) cos sin

)cos  and sin =
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n
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One of the interesting attributes of complex exponential functions is their derivatives. A 
derivate is simply reduced to a multiplication by iω, and an integration is reduced to a 
division by iω: 
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(1.12)

( )

0
0 0

ˆ ( )ˆ ˆ( ) ( )

ˆ ( ) ˆ ( )

i t
i t i t

n
n

n

dx edf tf t x e i x e i f t
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d f t i f t
dt

ω
ω ωω ω

ω

= ⇒ = = =

=

⇒
 

All of this becomes very useful when we want to solve certain differential equations, as 
they occur in physics. Consider, for example, the differential equation of a spring: 
 
Simple Harmonic Motion (SHM): 

 Note that k is the spring constant here, not the wave number.

2

2

;  k is the spring constant!
 
Newton's second law applies:

0 this is a linear differential equation of the second order. 

It has two  independent solutions, which combine

F kx

d xF ma mx m kx
dt

kx x
m

= −

= ≡ ≡ = −

+ =

 to form the
general solution of the d.e.
The d.e. requires two initial conditions to integrate and to form a unique solution.

(1.13)  

 
We see that cosωt, sinωt, and eiωt, e-iωt are solutions.  

(1.14)
( )

2

2

phase

 x=Acos  therefore this is a solution if

sin sin ;  is called a constant phase shift; 

these are all functions which satisfy the differential equation. 

Let t x x
k
m

x A t and A t

ω ω

ω

ω ω ϕ ϕ

⇒ = −

=

= +
 

Any linear combination of such functions would also be a solution. If we use real 
functions we form a linear combination of the sine and cosine function. 
(1.15) ( ) ( )cos sin sin 'cos 'x A t B t C t C tω ω ω ϕ ω= ⋅ + ⋅ = + = +ϕ  
 If we use complex solutions we bear in mind that ultimately we need a real solution for a 
real measurement. We therefore use the real part or the imaginary part of a complex 
solution to describe a physical situation, which brings us back to (1.15). 
When we impose the initial conditions, the two arbitrary constants A and B disappear. 
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(1.16)  

We try as general solutions one of the following:
a)x(t)=Acos sin
) ( ) sin( )
ˆ) ( )  we use either the real part of the 

solution or the imaginary part. The initial conditions spe

i t i t

t B t
b x t C t
c z t Ae Beω ω

ω ω
ω ϕ

−

+
= +

= +
cify 

the location x(t=0) and the speed at v(t=0) at the time t=0.
When we start with a fully expanded spring, its initial location is evidently x(0)=A and its 
speed is v(0) = 0. These standard initial conditions lead immediately to the unique 
solution for the motion of the spring: 

(1.17)

2

2

( ) cos  with 

v( ) sin ;
( ) ( )

kx t A t
m

t x A t
a t x x t

ω ω

ω ω

ω

= =

= = −

= = −

 

 
We can find the same solution when we consider the total energy of the spring: 
 

(1.18) 2 2 21 1 1 1v
2 2 2 2

2E m kx mx k= + = + x  

We know that the total energy of a simple spring with the force –kx is conserved. 
We can use this information to directly find the solution for x and v: 
 

(1.19) 

( )

2 2

0 

2 2 2
0

2 2 2
0

2 2 2
0

1 1
2 2

For simplicity we assume the standard initial conditions 
x(0)=x and v(0)=0

1 1 1E=E(0)=
2 2 2

E mx kx

kx mx kx

mx kx kx
kx x x
m

= +

= +

= −

= −

 

(1.20) 

( ) ( )
2

2 2 2 2 2
0 0

2

2 2 2 2 2
0 0

2 2
0

1 1 1 1;

1 we choose the + sign, because we know 

that our answer must be fitted to the initial conditions.

dx k x x x x
dt m

dt dt
dx x x dx x x

dxdt
x x

ω

ω ω

ω

⎛ ⎞ = − = −⎜ ⎟
⎝ ⎠

⎛ ⎞ = = ±⎜ ⎟ −⎝ ⎠ −

= ±
−
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(1.21) 

( )

( )

1
0 0

0 0

0 0

0

1 sin sin

sin  According to the initial condition v(0)=0

v(0)= cos

x xt t t t
x x

x x t t

x t

ω
ω

ω ω

ω ω

− ⎛ ⎞
⎡ ⎤= + ⇒ − =⎜ ⎟ ⎣ ⎦

⎝ ⎠
= −

0 0
0

0 ;
2

but sin(x+ ) cos
2

t

t t

x

πω ω

π
=

⎛ ⎞
− = ⇒ − =⎜ ⎟⎜ ⎟

⎝ ⎠

=

 

Therefore our solution is  
(1.22) 0( ) cosx t x tω=  
 
It becomes a bit more challenging when we also have a damping term b: 

(1.23) 

2
0

) v( )

The sum of the exterior forces on the spring is then:
)  or

) 0

dampinga F b t bx

b F kx bx mx
b k bc x x x x x x
m m m

ω

= − ≡ −

= − − =

+ + = = + +

 

Neither a cosine nor a sine function (alone) will satisfy the d.e. in this case; a complex 
trial solution however leads to an algebraic condition, which is called the characteristic 
equation of the differential equation: 

(1.24) 

0

2 2 2 2
0 0

2
2

202
2
0

ˆ ˆ) ( )  Remember that derivation means multiplication by i

ˆ) ( ) 0 0 quadratic equation in 

4 1= 4
2 2 2

i ta z t z e
b bb i z t i
m m

b bi b bm m i
m m

ω ω

ω ω ω ω ω ω

ω
ω ω

= ⇒

⎛ ⎞− + + = ⇒ − + + =⎜ ⎟
⎝ ⎠

− ± − +
⎛ ⎞= ± − ⎜ ⎟− ⎝ ⎠

ω  

 
We distinguish three different possibilities, depending on the value of the radicand, the 
first of which is our most important case: 

(1.25) 2 2
2 2

0 0=i ; for 0
2 2 2
b b b
m m m

ω ω ω⎛ ⎞ ⎛ ⎞± − − >⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

(1.26) 
2 2

2 2
0 0=i ; 0

2 2 2
b b b
m m m

ω ω ω
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟± − − <⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
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(1.27) 

2
2

0

2 2
2

1 single solution:

  (double root) =i ; 0
2 2

The original characteristic equation can be written as

i 0 0
2 2

b b
m m

b b bi
m m m

ω ω

ω ω ω

⎛ ⎞− =⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞− = = − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 
The most important (for our purposes here) complex general solution to the differential 
equation corresponds to the case in (1.25): 
(1.28)

2
22

20
0

i
2 2 2 2

0 0

22
0

ˆ ˆ ˆ)  we can easily guess at a real solution x now
(assume that the radicand is positive; remember the Euler formula):

b)x(t)=Ae cos

b b b bi t t i tm m m m

b t
m

a z z e z e

bt

ω ω

ω

⎛ ⎞⎛ ⎞⎜ ⎟ ⎛ ⎞± −⎜ ⎟ − ± −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

−

= =

−
2 2

22
1 1 0Ae cos  with 

2 2

b t
m bt

m m
ω ω ω

−⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ = = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 
We follow the general approach of trying to solve our equations with complex functions, 
and when we have found a general complex solution, we take the real part of that solution 
as our physical solution.(1.28) b) is an exponentially decreasing cosine function. We can 
rewrite the new frequency ω1 in terms of the original ω0

2=k/m, which we now call ω0
 

(1.29) 

22 2 2
2

1 0 0 0 02 2
0

2 2

1 0

) 1 1
2 2 4

) 1 ;1 0
4 4

b b b ma
m m m k m

b bb
km km

ω ω ω ω ω
ω

ω ω

⎛ ⎞⎛ ⎞= − = − = − = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − − >

1
4

mb
k

=
 

In first approximation ω1=ω0. This means that in damped oscillations the same frequency 

applies as long as the number 
2

4
b
km

 is small. 

 
To prove this, it is useful to recall the binomial expansion formula (we used this already 
with the relativistic kinetic energy): 

(1.30)
( ) ( ) ( )( ) ( )r

k
0

1 2 1
(1 )  with  

!
for k 0 and 0 for k=0

r r k
k

k

r r r r k
x x

k

∞

=

− − − +
+ = =

〉

∑
 

(1.31) ( )1 1  for x 1rx r x+ ≈ + ⋅  
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thus (1.32) ( ) ( )
1

2 0.5 0.52
1 2

1 1 0.5 0.5(0.5 1)(1 ) 1 ; 0.5;
2 8 1 2

x x x −
− = − + = = = = −

1
8  

 

(1.33)
22 2 2

1 0 0
11 1

4 8 8 4
b b b
km km km

ω ω ω
⎛ ⎞⎛ ⎞
⎜ ⎟= − ≈ − + + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

Therefore, in first approximation, ω1=ω0.  
 
Assume that k=2N/m; m=0.5kg; x(0)=1.2m. Find a damping factor b, which would cause 
the amplitude to decrease by 50% in 20 periods. 
 

(1.34) 

2
12

1 1 0 0

2

0

2
2 1

1 0

( ) cos ; 1.2 ; ; 1 ; 2
4

2We are looking for 0.6=1.2 ; 20 20 20

ln 0.5 1.1 10 ; 1 2.00000
20 4

b t
m

b t
m

b kx t Ae t A m s
km m

e t T

Ns bb s
m km

ω ω ω ω

π π
ω

ω ω
π

− −

−

− −

= = = − =

= = =

= − = × = − ≈

=

 

  

(1.35) 
2 2

2 22 2
0 1 1x(t)=Ae cos Ae cos  with 

2 2

b bt t
m mb bt t

m m
ω ω ω ω

− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟− = = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
0  

Find the time it takes for the amplitude to decrease by the factor 2: 
 

(1.36) 
2 2

1/ 2

10.5 e ;  =e ;  -ln2=-
2 2

2 ln 2

b bt t
m m bA A t

m
mb
t

− −
=

=
 

Thus, by measuring the time it takes for a spring oscillation to have its amplitude reduced 
to half the original value, we can experimentally determine the damping factor b. 
 
Now, what happens to the energy? As we have friction, we do not expect the total 
energy to remain constant. It loses energy over time. Let us find out how: 

(1.37) 

( ) 2

dvv
dt

dv  is the d.e. which we substitute in the formula for dE
dt

v

dE dxm kx
dt dt

dxm kx b
dt

dE dx dxkx bx kx b
dt dt dt

= +

= − −

= − − + = −
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This means that a damped oscillation does not conserve energy but loses it at the 
rate of bv2. 
 

Remarks on the special case (optional) in which the 
2

2
1 0 2

b
m

ω ω ⎛ ⎞= −⎜ ⎟
⎝ ⎠

=0. In this case 

our approach yields only a single solution to the d.e., namely 2
0x e

b t
m

−
. However, 

according to the theory of differential equations a linear differential equation of the 
second order has two separate solutions, which combine to a single solution if one applies 

the initial conditions. This second solution is in the present case given by 2
1

b t
mx te

−
. The 

general solution in this case is therefore: 

(1.38) ( ) 2
0 1 0 1( )  in which x  and x  are constants

determined by the initial conditions.

b t
mx t x x t e

−
= +  

In the case of the standard initial conditions x(0)=A, v(0)=0 this yields  

(1.39) 
0 1

2

 and 
2

( ) 1
2

b t
m

bx A x A
m

bx t t Ae
m

−

= =

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
 
One can check this by inserting: 

(1.40) 

2

2 2
2 2 2 2

( ) 1  for t=0
2

0 for t=0
2 2 2 2

b t
m

b b b bt t t t
m m m m

bx t t Ae A
m

b b b bx Ae Ae tAe tAe
m m m m

−

− − − −

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= − + − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
  
Forced Oscillations: 
It very often happens that an oscillation is driven from the outside, i.e. that there is an 
additional force applied to the spring, for example, an electric oscillation with a different 
frequency, which we now label ωf. 
This outside force may have the form F·cosωft, with ωf being the driving frequency. We 
refer to the ω0 as the intrinsic or natural frequency, the frequency determined by k/m in 
the case of the spring. One can easily see that if this outside force is applied long enough, 
the spring will oscillate more or less with the new forced frequency ωf.  
Mathematically we have to solve the following situation: 
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(1.41)

) cos  We are only looking for a special solution after a long time, when

the forced system oscillates with the frequency . We try a new exponential solution and write

the right hand side 

f

f

k Fa x x t
m m

ω

ω

+ =

( ) ( )

( )

2 2
0 2 2

0

2
0

of equation a) in terms of a complex function:cos

ˆb)x=A  we get A  which means that 

This means that we get a new oscillation with the amplitude:

)

f

f f f

i t
f

i t i t i t
f

f

f

t e

F Fe e e A
m m

Fc A
m

ω

ω ω ω

ω

ω ω
ω ω

ω
ω

⇒

− + = =
− +

=
( )2

;  this means that the amplitude is a function of the frequency of the 

applied exterior force.
fω−

 
The new amplitude grows to infinity as the forced frequency ωf approaches the natural 
frequency ω0. This is what we call a resonance effect. In reality, there is always a 
damping factor b/m, which appears in the parenthesis of the denominator in (1.41) so that 
A(ωf) does not go to infinity but can still grow to extremely large (and often destructive) 
values.  
 
If we use the damped equation, we proceed as follows to find the special solution for very 
large values of t: 
(1.42) ˆ fi tSet x Ae ω=  
 
 

(1.43) ( )

2

1 1
22 2 2 12 20

0

1 1

ˆ ; tan

where a  is the real part and b  is the imaginary part in the complex functi

f f fi t i t i t
f f

i i

f f
f f

b k F b k Fx x x e i Ae e
m m m m m m

F F bm mA re e
b abi
m m

ω ω ω

β β

ω ω

β
ω ω ω ω ω ω

− −

⎛ ⎞+ + = ⇒ − + + = ⇒⎜ ⎟
⎝ ⎠

= = =
⎛ ⎞ ⎛ ⎞− +⎜ ⎟ − + ⎜ ⎟⎝ ⎠ ⎝ ⎠

−=

1
1

2 2
0 1 1

a b

on:

ˆ a bf f
bz i i
m

ω ω ω= − + = +

 

 
Practice example to rationalize the complex denominator of a fraction: 

(1.44) ( )
( )0.9274 2

0.9274 24 4tan 2 tan 2
2 2 3 3

1 1 1 1 1
3 4 55

3 4 5

i n
i ni Arc n i Arc n

e
i e

e e

π
ππ π

− +
+⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= = = =
+

+

 

 
 
We rationalize the complex amplitude according to (1.7) 
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(1.45) 
12 2

1 1 1 1

1 1ˆ  different meaning for b ; dont confuse with b,

 the air drag coefficient!!

iA e
a ib a b

β−= =
+ +  

 

(1.46)

( )
( )

( )
( )

2 2
22 2

0 2

( ) ( )

2 2
22 2

0 2

ˆ

ˆˆ particular solution for large tf f

i
f

f
f

i t i t
f

f
f

F
mA e

b
m

F
mx A e e

b
m

β

ω β ω β

ω
ω

ω ω

ω
ω

ω ω

−

− −

=

− +

= =

− +

 

 
This means that the amplitude of the forced oscillation with damping is a function of the 
frequency ωf of the driving force. If this frequency approaches the original frequency of 
the spring, the amplitude will approach its maximum value. We call this effect resonance. 
The original frequency is referred to as resonance frequency. 
 
As shown earlier a damped oscillation loses energy at the rate of  

(1.47) 2vdE b
dt

= −  

One can prove this easily by considering the total energy and then using the differential 
equation for damped oscillation (see earlier (1.37)): 

(1.48) 
( )

( )

2 2

2

1 1 v ; 0; x=-
2 2

vv= v vmx= v - v

E kx m mx bx kx m bx kx

dE kxx m kx kxx bx kx b
dt

= + + + = +

= + + + − = −
 

This is evidently much easier than finding the energy from the solution 

2
0 1e cos

b t
mx x tω

−
= : 

 
Let us use the example below to calculate some numbers for the energy loss: 
 

(1.49) 
2

0 1 0

2
2

1 0

e cos cos

 
2

b t
m

0x x t x

b
m

tω ω

ω ω

−
= ≈

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 

(1.50) max 0 0v x ω=  
 
 

Use 10 cm for the amplitude of your oscillation and a mass of 1kg. Calculate ω0 and 
choose values for ω0t between 0 and 2π.  
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 1
1 0 5.2k s

m
ω ω −≈ = =  

If b=1.00E-4 we get for the maximum energy loss per second  

  
( )22 4

0v 1.0 10 0.27 2.7 10b b A Watω − −− ≈ − = − × × = − × 5 ts

s

In quantum physics we find that the energy emitted by any oscillator is a multiple of the 
angular frequency and Planck’s quantum S  
 

-34
0The energy for N oscillators is therefore  with 10N Jω ≈  

(Reminder: We have seen elsewhere that the angular momentum of the electronic orbits 
in atoms is also quantized: l ) n=
This means that per second the oscillator above emits about 4x1028 energy quanta. We 
also find the result in quantum physics that the minimal energy of an oscillator is not 0 

but 0
1
2

ω . This is consistent with Heisenberg’s uncertainty relation which does not allow 

any object to be totally at rest. It also illustrates the fact that Heisenberg’s uncertainty 
relation is not merely an expression about the uncertainty of measurement but about the 
indeterminate nature of actuality itself.  
 
Additional fun stuff (optional) 
Wavenumber k and derivatives (optional): 
We have seen that derivatives are particularly easy to obtain with complex exponential 
functions. It does not matter whether we talk about time derivatives, spatial derivatives or 
partial derivates: 

(1.51) 

( ) sin ;   is the wavenumber, the number of complete 
wave-cycles in the spatial x-directionfitting within 2 . 
The wavenumber is for the space coordinates what  is 
for the time coordinate. (A sine

f x A kx k
π
ω

=

 or cosine wave function with 
amplitude "A" can be described as the projection of circular motion 
with radius "A" on the x or y axis,  is also the angular frequency.)

cosdf kA kx
dx

ω

=
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 (1.52) 

2 2;

The wave number k can become a vector, when we consider 
a sine function in three dimensions: 
sin( )

2 2 2; ; ; , ,

x y z

x y z x y z
x y z

x y z

k
T

k x k y k z

k k k k k k k

k r k x k y k z

π πω
λ

π π π
λ λ λ

= =

+ +

= = = =

⋅ = + +

 

All functions (f kx t )ω− +Φ  represent linear waves. We discuss this in the next chapters 
16-18. This includes complex functions which can be simply thought of as being 
combinations of sine and cosine functions. 

(1.53)
( )

( )ˆ ( , )
ˆ ˆˆ ˆ( , ) and ( , )

ˆ ˆ ˆ ( , , , ) ( , ) ( , ) ( , )

We see that for exponential function the del operator  becomes 

i kx t

i kr t

Let f x t Ae

f fi f x t ikf x t
t x

Let f x y z t Ae f r t grad f r t ikf r t

ik

ω

ω

ω

−

−

=

∂ ∂
= − =

∂ ∂

= ⇒∇ = ⋅ =

∇

ˆ
 

 


	Wavenumber k and derivatives (optional):

