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31.1 Faraday’s Law of Induction. 
We saw in the last chapter that a changing electric field (or its flux) creates a changing magnetic 
field which is responsible for the displacement current density (or displacement current) in the 
space between the plates of a capacitor.  
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It is quite natural (symmetry!) to ask whether it would also be possible that changing magnetic 
fields would create a changing electric field and all the associated quantities like current, voltage, 
etc. Faraday discovered in an ingenious set-up of experiments that this is indeed the case.  
 
He found that by simply taking a magnet and moving it around in front of an electric wire, 
a current was induced in that wire, without the presence of any battery. 
 
The localized law which quantitatively describes this relationship is known as Faraday’s law: 
A time-changing electric field curls around any time changing magnetic field: 

(31.3) 
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Applying Stokes’ theorem to this gives us Faraday’s law in integral form: 
 

(31.4) cos

B B B

A A A A

d d d
dt dt dt

B d dE dA dA B dA B dA
t dt dt

θ

Φ Φ Φ− − −

   ∂
∇× = − = − = −   ∂    

∫∫ ∫∫ ∫∫ ∫∫


    

   



 

 
 
A time-changing magnetic flux creates an emf in an adjacent conducting wire.  
 

(31.5) B
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Note that the line integral over the electric field extends over a  whole loop. If the electric field 
would derive from a potential field V, implying a conservative electric field, this integral would 
be 0. Therefore we conclude that the electric field in Faraday’s law is a non-conservative 
field. Furthermore, note that the surface and boundary of that surface, which we use in the 
application of Faraday’s law are not the same as we used in the application of Ampere’s law. 
Indeed, if a time changing current creates a magnetic field according to Ampere’s law, the 
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magnetic field creates an electric field around it. The surfaces chosen are perpendicular to each 
other, so that we may choose to talk about an Ampereian surface and a Faraday surface. 
 
Faraday’s law of induction: 
 

(31.6) 
Bd

dt
ε Φ
= −  

 
 
The flux on the right hand side can change in three different ways:  

• a changing magnetic field, 
dBA
dt

ε = −  

• a changing surface, 
dAB
dt

ε = − Motional emf 

• a changing angle between surface and magnetic field, 
cosd tBA
dt
ωε = −  

• and any combination of these. 
 

 

ind

A changing magnetic flux will induce an emf in any conducting material, 
which will induce a current in any loop of wire properly positioned. 

                                                  I =
R
ε

 

 

We can immediately see that we need a minus sign in Faraday’s law BcurlE
t

∂
= −

∂





. A time 

changing magnetic field creates loops of electric fields around it. If there are charges that are free 
to move they will feel the electric force F qE=

 

. In a conductor this will lead to a current and 
consequently to an emf which is the circulation of this non-conservative electric field. In this 
conductor  with a resistance R we have a current: 
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 A time-changing current in a conducting loop in turn creates a magnetic field according to,   
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This would lead to an infinite built-up of electromagnetic energy, violating energy conservation. 
Therefore, the induced emf (current) will be such that it must oppose the action which originally 
created the emf. This negative sign is explicitly stated in what is called Lenz’s law. (See later.) 
If the wire surrounding the surface consists of N loops we have to use the circulation 
through all of these wires, therefore producing N times the emf of one single loop.  
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(31.9) BdN
dt

ε Φ
= −  

It is often helpful to symbolically introduce an emf powersource in a circuit with an induced 
current, even if there is no physical power source in the circuit. For example, if we have a coil of 
N loops, surrounding a time changing B-field, and the coil has a resistance of R we could draw 
a sketch as shown below: 

 
Let us study a few cases in which an emf is created acording to Faraday’s law. A time varying 
magnetic flux creates an emf. We look at situations in which the surface through which we 
have a constant magnetic field varies in time. 
 

31.2 Motional emf and Power 
dAB
dt

ε = − . 

We consider a simple case of a changing surface perpendicular to a constant magnetic field. This 
changing area can be created, for example, by a conducting bar being dragged over two 
conducting rails, both being perpendicular to a constant magnetic field. The rails are connecting 
by a conducting wire (left) with resistance R.The area intercepting the magnetic field is given by 

vdA dxL x A L L
dt dt

⋅ = ⇒ = = ⋅ So we obviously have a changing magnetic flux: 

( ) vBd d dABA B BL
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Φ

= = = which will induce an emf in the circuit  
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.  

with the current (31.11) 
v

ind
BLI

R R
ε

= = −
 

Before we investigate that further, let us look at the same setup but understand it through the 
concepts of moving charges:

 

First, we consider the situation without a connecting wire between the two rails. The bar 
moves at constant velocity to the right on the two frictionless conducting rails. (We don’t need 
an applied force as there is no work done against friction.) 

 
While the bar moves to the right with speed v, an upward 
magnetic force FB =qvB is created which pushes positive 
charges up, (negative charges down). As these charges 
accumulate, an electric force between the stationary 
surplus charges arises. This electric force FE =qE is 
opposite to the magnetic force.  This movement of charges 
continues until an equilibrium between the upward 

magnetic force and the downward electrostatic force is established. 

(31.12) E E
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Thus, a potential difference V E L∆ = ⋅  between the surplus charges on both vertical ends of the 
bar is established. This potential difference is maintained as long as the bar keeps moving and  as 
long as the circuit is not completed with a connecting wire at another location. 
 
(31.13) vV EL BL∆ = =  
 
Note that in the analysis of this situation we did not use Faraday’s law to explain the 
phenomenon. However, the value of this potential difference ΔV=BLv is the same as the emf 
induced in a closed loop. In the moment the top and bottom rail are connected through a 
conducting wire with resistance R, the charges will flow around the closed loop forming a 
current. What will happen in that scenario follows: 
 
Second:We connect the top with the bottom through a connecting wire with resistance R. Now, 
an induced current will flow through the completed loop. The potential difference across the 
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induced emf, current, 
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resistor is obviously indI R⋅   We now have a complete loop, so that we can talk about a changing 
magnetic flux through the closed circuit. However, we should not talk about a voltage difference 
but about an induced emf, and an induced current Iind because  

(31.14)
 

0

Remember that a vector field cannot be conservative when its curl
is different from 0, or, which is the same, when its integral around
a closed loop is different from 0. 

BdBcurlE
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The polarity of the emf is such that it opposes the 

process which created it in the first place. What created it is the applied force which drags the bar 
across the rails from left to right. If we do not have an applied force, the movement of the bar 

will decrease exponentially.  The induced current 
v

ind
B LI

R R
ε −

= =  , being situated in the 

constant magnetic field, produces an opposing force in the bar according to  
(31.15) B indF I L B= ×
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Let us apply Newton’s law to this situation: 

(31.16) 
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Now, let us use energy considerations to derive how the velocity decreases. We have the kinetic 
energy of the moving bar. As it slows down, its original kinetic energy goes to 0. The change in 
its kinetic energy is therefore negative.  
The induced current in the conducting wire decreases also and therefore the power  2RI delivered 
to the resistor by the magnetic field. But, while the kinetic energy of the bar goes to 0, the energy 
delivered to the resistor increases (at a slowing rate) from 0 to its final value. Therefore, 

(31.17) 2 21 v
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The induced current in the bar is the result of  the induced emf  (compare (31.11)) 
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To get an opposing magnetic force the induced current of negative electrons in the bar must 
be directed downward.  
 
31.2a Transformation of  mechanical power into electric power: 
We study the energy of the system with a constant exterior force appF applied: 
For the bar to keep moving at constant velocity, this applied force is equal and opposite to the 

magnetic force on the bar 
2 2v v

B ind
LB L BF I LB LB LB

R R R
ε

= = = =  

Let us show that the power required to move the bar to the right is equal to the electric power 
generated due to Faraday’s law. In other words, let us see how this setup actally corresponds to a 
generator of electric energy dissipated in the load. The power for a constant force is given by 

vpower F= ⋅


 . 

(31.20)
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The power vBF ⋅
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

 applied by the exterior mechanical force is equal to the power delivered to the 

resistor 
2

R
ε by the current in the loop, i.e. we confirm energy conservation. 

 

31.2b Motional emf induced in a bar rotating in a constant magnetic field
dAB
dt

ε = − : 

In order to have a closed circuit we must connect the two ends of the bar with a conducting wire. 

We have seen that the emf in a linearly moving bar is vBd BL
dt

ε Φ
= − = − Now, in a rotating 

bar, every segment of length dr of the bar moves at a different velocity v rω= , depending on the 
distance r to the center of rotation. We therefore calculate the infinitesimal emf  for a small area 
bounded  by the lengths dr and rdθ  

 (31.21)
dA rd dr
dA dr dr r dr
dt dt

θ
θ ω

= ⋅ ⇒

= =
 

This time-changing infinitesimal area times the magnetic field gives us the infinitesimal induced 
emf for the small segment of the bar, with length dr d B r dr Br drε ω ω= ⋅ =

  
To get the total emf induced in the rotating bar of length L we must integrate over the 
infinitesimal portions of the emf  from r=0 to r=L. 

(31.22) 
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31.3 Lenz’s Law. 
Faraday’ law includes Lenz’s law as the minus sign in  

(31.23) Bd
dt

ε Φ
= −  

which is the result of taking the surface integral over the differential equation (differential form 
of Faraday’s law): 
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and using Stokes theorem which yields the integral form of Faraday’s law. 
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A changing magnetic flux induces an emf in a circuit. The polarity of the emf is such that it 
opposes whatever causes the original changing flux.Lenz’s law explicitly states the existence 
of the negative sign in Faraday’s law:  

(31.26)

The induced current (created by a primary magnetic field) in a loop is in the direction 
that creates a (secondary) magnetic field which opposes the change in magnetic flux 
(of the primary magnetic field) through the area enclosed by the loop.

 

 
Let us just review the principles at work here: 
a) a changing magnetic flux of field B1 creates an electric emf and current in a conducting loop. 
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b) any current creates a magnetic field around it: 

(31.28) 0 0 0
EB j
t

µ µ ε ∂
∇× = +

∂



 
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Without the minus sign we would have an ever increasing magnetic and electric field, which 
would be an ever increasing energy, which would violate the conservation of energy law. 
 
31.4 Induced emf and Electric Fields. 
Another point which must be emphasized here is that the induced emf should not be written as a 
voltage difference because voltage difference implies the existence of a conservative electric 

field. The electric field in (31.27) is explicitly not 
conservative because 0curlE ≠



the curl of E is not 0. The 
path integral of E around a closed loop is not 0 but is equal to 
the emf. Remember that the voltage difference was defined 
as: 

(31.29)
b

a
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which holds only for a conservative electric field.  

(31.30)
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This is best illustrated by putting a circular conductor into a 
time-changing magnetic field. (example in 31.4) 

  According to BE
t

∂
∇× = −

∂



 

we get an electric field  

(31.31) 22 rE B rπ π= −  or  

(31.32) ( )
2
r dBE t

dt
= −

 
This electric field , created by the primary magnetic field B1(t) creates a secondary magnetic 
field around itself according to Maxwell’s law: 

(31.33) ( )2 0 0
EcurlB t
t

ε µ ∂
=
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We can see that the secondary magnetic field cannot be such that it would strengthen the original 
primary magnetic field. Lenz’s law takes care of that. This is of course the effect of the minus 

sign in Faraday’s law: ( )Bd dBE t
dt dt

ε Φ
= − ⇔∇× = −



 

 

 
Example for an emf created by a changing magnetic field: 
Example 31.7 
Calculate the induced electric field outside of a solenoid at a distance r>R. The long solenoid has 
a radius R and n wires per unit length. It carries an alternating current  
(31.34) 0 cosI I tω=  
Obviously, the solenoid creates a magnetic field inside 0 0 cosB nI tµ ω= . As this magnetic field 
varies in time it induces an electric field everywhere around itself according to: 
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(31.35) 0 0 sinBE nI t
t
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The circulation of E around an arbitrary loop (surrounding the magnetic field ) with radius r is 
equal to the flux of the changing magnetic field: 
 
(31.36) 2

0 02 sinrE r nI tπ π µ ω ω=  
If we would place a conductor at this location we would obviously create an emf  
(31.37) 2

0 02 sinrE r nI tε π π µ ω ω= =  
This principle is exploited in generators of electric power. 
 
31.5 Generators and Electric Motors. 
If we take a wire bent into the form of a loop and rotate it with frequency ω through a 
mechanical device (falling water in a dam) inside of a magnet, we obviously create an emf in that 
wire according to: 

(31.38)
( ) ( )

( )

cos

cos sin

d dB A BA
dt dt

d BA t BA t
dt

ε θ

ω ω ω

= − ⋅ = − =

− =



 

The emf changes signs (polarity) every 180 degrees. 
Brushes take this emf and lead it into an exterior 
circuit, where we have the alternating current: 

(31.39) ind
indI

R
ε

=  

Here we have the source of the notion 
electromotive force emf. It is originally the ac 
voltage of an electric power generator delivered 
to a circuit. By using a commutator (a split ring 
conductor) we avoid reversing the polarity and 
create a time vaying dc-current. We know from 
the definition that the voltage is equal to the 
circulation of an electric field around a closed 
loop. (Faraday’s law.) 
 
It is convenient to rotate a great number N of 
loops in this magnet which creates a maximum 
emf of  
 
(31.40) max NBAε ω=  
The electric power created in this way is not 
free. It is created by the power supplied by the 

Work 

indI↓  

brushes 

Permanent 
Magnet 

Magnet 

rotating set of N 
loops 

Generator: 



Dr. Fritz Wilhelm                                                                                                     page 11 of 13 
C:\physics\230 lecture\ch31 Faradays law.docx;  5/3/2009 
 
mechanical device rotating the coils in the magnetic field. We are dealing with a power or energy 
transformation. 
 
An electromotor is a device in which electric energy is transformed into mechanical work. It 
functions very much like a generator running in reverse.   
Instead of generating current by mechanically rotating a coil, a dc current is supplied to the coil 
by an outside electric power supply like a battery. The coil is situated in a magnetic field and acts 
as a magnetic dipole. The torque acting on the current carrying coil causes it to rotate 

B NIA Bτ µ= × = ×
 

   
sinBτ µ θ⇒ =   .  

Provisions need to be made in order not to reverse the direction of the torque every half cycle. 
(Commutators, brushes, electronic timers.) 
The motor is designed to produce a continuing rotation of the coils, which can then be used to do 
mechanical work.  
However in a dc circuit a back emf is being created. As the coil rotates in the magnetic field, the 
changing magnetic flux induces a secondary or back-emf in the coil; this induced emf always 
acts to reduce the original current in the coil (Lenz’s law). This is why it is called a back emf. 
The back-emf increases in magnitude as the rotational speed of the coil increases max NBAε ω= . 
When a motor is activated, by pulling the trigger of a circular saw, for example,  there is initially 

no back-emf; thus the original current is at its maximum 
VI
R
∆

= ,  determined by the resitance in 

the circuit (mostly the coil wiring, e.g. around 10 Ohms.) This situation must only be allowed to 
go on for a  few seconds so that no overheating occurs. As the coil begins to rotate, the induced 
emf (e.g. 110V) opposes the outside applied voltage of 120V, which therefore decreases, causing 

the current to decrease as well 
120 110

10
V VI −

=
Ω

. If the mechanical load increases (the circular 

saw cuts through a tough piece of wood), the rotational speed slows down, which causes the 
back-emf to decrease, to e.g.100V. This reduction in the back-emf increases the net voltage in 

the circuit and therefore the current in the coil 
120 100 1.2

10
V VI A−

= =
Ω

, thus drawing more 

power RI2  from the external power supply. For this reason, the power requirements for starting a 
motor are larger than for normal operation, and they are larger for running it with a greater load 
rather than with a smaller one. 
 
If the motor is allowed to run under no mechanical load, the back emf must be sufficiently large 
so that the current in the coil does not cause overheating and burn-out of the motor. This leads us 
to consider the obvious danger of a jammed motor. If the motor jams, the rotation stops, and no 
more emf is reducing the applied voltage. Thus the internal current is given by the outside 
voltage, say 120V, divided by the resistance of maybe 10 Ohms. We will have a current of 12A, 
instead of 1 A. The motor will burn up. 
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This back-emf is illustrated in the following problem: 
 
An electro motor in normal operation carries a direct current of 0.850A when connected to a 120 
V power supply. The resistance of the motor windings is 11.8 Ohms.  
a)While in normal operation, what is the back emf generated in the motor?  
IR =10 Volts is the voltage in the circuit. Therefore the difference between the voltage delivered 
to the circuit and IR must be the back emf, which means it is 110Volts. 
120 0V RI ε− − =  
b) At what rate is internal energy produced in the windings? 
Internal energy means heat energy, which is produced in the resistor.  

2 8.53Power RI W= =  
c)Suppose that a malfunction stops the motor shaft (in the coil) from rotating. At what rate will 
internal energy be produced in that case? 
The emf being 0, the current will be 120 /11.8 10.2I V A= Ω =  

2 1.22Power RI kW I V= = = ∆  
 
31.7 Maxwell’s equations. 

(31.41) 

0 0

0

Gauss: integral form:

The flux of the electrostatic field E through a closed surface is 
equal to the charge contained within the volume of this surface, divided by . 

E
V

QdivE E E dAρ
ε ε

ε

∂

= ∇ = ⇒ = Φ =∫∫
   

 





 Add to this: 

(31.42) 0 0

1
4

0 conservative field 

qE gradV V V V
r

E

ρ
ε πε

= − ≡ −∇⋅ ⇒ ∆ = − ⇒ =

∇× =


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(31.43) Electric dipole: ; ; Ep qd p E U p Eτ= = × = − ⋅


 
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(31.44) 

0

0 0 0 0 0 0

Ampere-Maxwell :

Any current creates a magnetic field around it.
Any time changing electric flux creates a m

d

E

A A
I displacementcurrent

curlB B j

dEBds j dA I
t dt

µ

µ µ ε µ µ ε
∂

=

≡ ∇× =

  Φ∂
= + = + ∂ 

∫ ∫∫

  



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




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

agnetic field around it.

 

 

 

 
Add to this the derivation of the law of Biot-Savart: 
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(31.45) 

( )
( )

0

0
0 0

0 0
3 3

 is the vector potential:

vv
4

v r r
4 4

A

A j A

qB A A j q A r
r

q IdsB dB
r r

µ

µµ µ
π

µ µ
π π

∇× ∇× = = −∆

= ∇× ⇒ ∆ = − = − ⇒ =

× ×
⇒ = ⇒ =



  




   




  

 

 

 

(31.46) Lorentz force on a single moving: vF qE q B= + ×
  



 
 
(31.47) dF Ids B F IL B= × ⇒ = ×

    

  
 
(31.48) Magnetic dipole: ; ; BIA B U Bµ τ µ µ= = × = −

  

   

  
 

A

Faraday : integral form by Stokes law:

The time change of the magnetic flux through an open surface is equal to an emf created in a con

ind ind

B
ind

A

emf

BcurlE E
t

ddE ds B dA
dt dt∂

∂
≡ ∇× = − ⇒

∂
Φ

⋅ = − = −∫ ∫∫



  

 









ducting
wire which is a closed boundary to the Ampereian surface. 

 
 

0 A magnetic field has no beginning and no end. There are no magnetic
monopoles similar to positive and electric charges. The magnetic flux through a closed 
surface is always 0.

 =
A

divB B

B dA

≡ ∇ =

∫∫

  









0

 


