Chapter 30. Biot-Savart, Ampere's law, displacement current
(1.1) $\vec{F}_{B}=q \overrightarrow{\mathrm{v}} \times \vec{B}$
(1.2) $d \vec{F}_{B}=I(d \vec{s} \times \vec{B})$
(1.3) $\vec{\mu}=I \vec{A}=$ magnetic dipole moment
(1.4) $U_{B}=-\vec{\mu} \cdot \vec{B} ; \vec{\tau}_{B}=\vec{\mu} \times \vec{B}$
(1.5) $\operatorname{curl} \vec{B}=\mu_{0} \vec{j}$; permeability of space
$\iint_{A} \operatorname{curl} \vec{B} \cdot d \vec{A}=\oint_{\partial A} \vec{B} d \vec{s}=\mu_{0} \iint_{A} \vec{j} \cdot d \vec{A}=\mu_{0} I$ Ampere's law
(1.6) $d \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{d \vec{s} \times \vec{r}}{r^{3}}=\frac{\mu_{0} I}{4 \pi} \frac{d \vec{s} \times \vec{u}_{r}}{r^{2}} ;$ Biot-Savart;

$$
\begin{equation*}
\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q_{1} \vec{v}_{1} \times \vec{r}}{r^{3}} \tag{1.7}
\end{equation*}
$$

$\frac{\mu_{0}}{4 \pi}=10^{-7} ; \mu_{0}=1.2566 \cdot 10^{-6}$
$\frac{F}{L}=\frac{\mu_{0}}{2 \pi} \frac{I \cdot I^{\prime}}{r}$ force between 2 parallel wires
(1.8) $\operatorname{curl} \vec{B}=\mu_{0}(\vec{j}+\underbrace{\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}}_{\vec{j}_{d}})$ displacement current

1. In Niels Bohr's 1913 model of the hydrogen atom, an electron circles the proton at a distance of $0.529 \mathrm{E}-10 \mathrm{~m}$ with a speed of 2.19E6 m/s. Compute the magnitude of the magnetic field that this motion produces at the location of the proton. 12.5 T
2. (3) a) A conductor in the shape of a square loop of edge length 0.400 m carries a current $\mathrm{I}=10.0 \mathrm{~A}$ in a clockwise direction. Calculate the magnitude and direction of the magnetic field at the center of the square. (28.3E-6T into the paper.)
b) What if the conductor is bent into a single circular turn and carries the same current, what is the value of the magnetic field at the center? 24.7 E-6T.
3. A quarter circle of a wire is fed into on both ends by a straight wire, parallel to the radius. The wire carries a current of 5.00 A . The radius of the arc is 3.00 cm . Determine the magnitude and direction of the magnetic field at the origin. $\mathrm{B}=26.2 \mathrm{E}-6 \mathrm{~T}$.
4. (15) Two long parallel conductors carry currents of 3A into the page. Determine the direction and magnitude of the resultant B field at the perpendicular corner of a right triangle, whose hypotenuse (13 cm) is the distance between the two wires, and which has sides 5 and $12 \mathrm{~cm} .13 \mathrm{E}-6 \mathrm{~T}, 113^{\circ}$

The magnetic force between two wires.

5. (17) In the following figure the current in the long straight wire is $\mathrm{I}=5 \mathrm{~A}$ and the wire lies in the same plane as the rectangular loop below it. The rectangular loop carries a current of I'=10A. The long side of the loop, parallel to current I, has a length of

0.45 m , the small side has a length of 0.15 m . The closest distance between the two wires is 0.1 m . Find the magnitude and direction of the net force exerted on the loop by the magnetic field created by the wire. $\mathrm{F}=2.70 \mathrm{E}-5 \mathrm{~N}$ upwards.

Ampere's law:
6. (23) Four long parallel conductors carry equal currents of 5 A oriented perpendicular to the plane of the paper. The entry points into the paper form a square with its entry

points into the page on the left named A (top) and B (bottom). This is the left side of the square. The right side of the square has the currents come out of the paper with points C on top and D at the bottom. The side length is 0.2 m . Calculate the magnitude and direction of the magnetic field at the center of the square.
$B=20 \mathrm{E}-6 \mathrm{~T}$ to the bottom of the page.
7. Calculate the circulation of the following vectorfield $\langle-5 y, 3 x, 0\rangle$ around a semi circle with radius 5 using Stokes' theorem (Green's theorem). (100π)
8. (25) In a coaxial cable the center conductor is surrounded by a rubber layer, which is surrounded by an outer conductor, which is surrounded by another rubber layer. In a particular application, the current in the inner conductor is 1A out of the page and the

C:\physics\230 lecture\ch30 homework.docx; Saved:11/17/2009 9:31:00 PM;
P:11.17.2009
current in the outer conductor is 3 A into the page. Determine the magnitude and direction of the magnetic field at a point a inside the inner rubber layer at 1 mm from the center and at a point b outside the whole cable which lies 3 mm from the center of the cable.
a) 200E-6T toward top of page ccw, b) 133E-6 toward bottom of page cw.

9. (27) A packed bundle of 100 long, straight, insulated wires forms a cylinder of radius $\mathrm{R}=0.500 \mathrm{~cm}$. a) If each wire carries 2 A , what are the magnitude and direction of the magnetic force per unit length acting on a wire located 0.200 cm from the center of the bundle? ($6.34 \mathrm{E}-3 \mathrm{~N} / \mathrm{m}$ inward.)
b) Would a wire on the outer edge of the bundle experience a force greater or smaller than the value calculated in part a). (The force is greatest at the outer surface.)

The magnetic field of a solenoid:
10. (35)What current is required in the windings of a long solenoid that has 1000 turns uniformly distributed over a length of 0.4 m , to produce at the center of the solenoid a magnetic field of magnitude $1 \mathrm{E}-4 \mathrm{~T}$? $(31.8 \mathrm{~mA})$

Magnetic flux:
11. (39)A cube of edge length 2.5 cm is positioned with its sides along the positive $x-y-z$ coordinates. A uniform magnetic flux $\vec{B}=\langle 5,4,3\rangle T$ exists throughout the region.
Calculate the flux through the face in the $y-z$ plane intersecting +x at 2.5 cm .
(3.12Wb)

What is the total flux through the six faces? (0)
Displacement current and the general form of Ampere's law.

C:\physics\230 lecturelch30 homework.docx; Saved:11/17/2009 9:31:00 PM;

P:11.17.2009

12. A 0.1 A current is charging a capacitor that has square plates 5 cm on each side. The plate separation is 4 mm . Find (a) the time rate of change of electric flux between the plates and (b) the displacement current between the plates. (a: 11.3E9 Vm/s; b:0.1A)

Magnetism in matter:
13. In Bohr's model of the hydrogen atom, the electron circles around the proton with $\mathrm{v}=2.19 \mathrm{E} 6 \mathrm{~m} / \mathrm{s}$ with a radius of $0.529 \mathrm{E}-10 \mathrm{~m}$.
a) What is the magnitude of the magnetic moment due to the electron's motion? (9.27E-24Am ${ }^{2}$)
b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of the magnetic moment vector? (Downward.)
14. (53) Helmholtz coils. See lecture and lab.

$$
\frac{\mu_{0}}{4 \pi} \frac{I d \vec{s} \times \vec{r}}{r^{3}}
$$

15. Calculate the curl of $\vec{A}(r)=\frac{\mu_{0}}{4 \pi} q_{1} \frac{\overrightarrow{\mathrm{v}}_{1}}{r}=\frac{\mu_{0}}{4 \pi} q_{1} \frac{\overrightarrow{\mathrm{v}}_{1}}{\sqrt{x^{2}+y^{2}+z^{2}}}$
and confirm that

$$
\vec{B}=\operatorname{curl} \vec{A}=\frac{\mu_{0}}{4 \pi} \frac{q_{1} \vec{v}_{1} \times \vec{r}}{r^{3}}
$$

