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30.1 The Biot-Savart Law, or how to calculate the magnetic field 
of a current. 

Biot and Savart (19th century) determined a mathematical expression for calculating the magnetic 
field of a current: 
The known experimental facts were: 

a)Around any current carrying wire curls a 
magnetic field.  The field vectors point into 
the plane below the wire and come out of 
the plane above the wire. (Any moving 
charge has a magnetic field around it.) 
b) The magnitude of dB



 is proportional to 
1/r2, where r is the distance from the line 
element ds  to the point where we calculate 
the magnetic field. 
c) The magnitude of dB



  is proportional to 
the current and to the length ds. 
d) The magnitude dB is proportional also to 
sinθ, where θ is the angle between the 

vectors ds and r   
Using these experimental data and our knowledge of other relationships from mechanics in 
which one vector curls around another, let us try to guess at the mathematical relationship 
between currents and magnetic fields. 
This information can be summarized by the statement that the magnetic field B



 curls around the 
current density j



. In physics this can generally be expressed by the differential statement: 
(30.0)  is proportional to the current density , ,curlB j or B j∇× ∝

  
 

 
 
30.1a The curl of the velocity vector field: 
In mechanics we had a typical situation in the velocity of circular motion. The velocity vector v

curls around the 
vector for angular 
velocity ω .We 
described the 
relationship by: 
 
(30.1)
v= v sin
v and v

r r
r

ω ω θ
ω
× ⇒ =

⊥ ⊥

 

  

 
This relationship can 
also be captured in an 
interesting differential 
form, namely : 

ds  

r  
B


v or B




 

R=rsinθ  

0or jω µ




 

v

r

v= r
ω

ω×



 

dθ  

d dr r uθθ= ⋅ ⋅
 

 

( )

2 2

2

r constant

r 2

2 v 0 v

r
d drr
dt dt
r r

= =

= ⋅ =

⋅ = ⇔ ⊥





 

   

 

r



Dr. Fritz Wilhelm;                                                                                          page 3 of 30 
C:\physics\230 lecture\ch30 Biot-Savart Ampere.docx;  
saved: 4/25/2010 3:15:00 PM; last printed: 4/25/2010 3:15:00 PM 
 

 

 
(30.2) v curl v=2ω∇× ≡



   
By proving that this is always correct for any two vectors curling around each other in the way 
described we can have a guess at the relationship between the current and the magnetic field, 
namely that the curl of the magnetic field B is proportional to the current density: 
This relationship is called Ampere’s law. 
 

(30.3) 0curl B B jµ= ∇× =


 


 
 
Let us first prove that (30.2) is correct. 
Using the properties of the cross product we get: 

(30.4) ( ) ( ) ( )v= x y z y z x z x y

i j k
i z y j z x k y x

x y z
ω ω ω ω ω ω ω ω ω= − − − + −



 



 

  

 
 
Now we are ready to calculate the curl of the velocity vector in circular motions: 

(30.5) ( )v= 2 2 2x y z x x y z

y z z x x y

i j k
i j k

z y x z y x
ω ω ω ω ω

ω ω ω ω ω ω
∇× ∂ ∂ ∂ = + + + =

− − −



 




 

  

 
Thus, the equation (30.3) must be correct. The law is called Ampere’s law, the coefficient is 0µ
and is called the permeability of free space: 

(30.6) 
7 70

0 4 10 ; 10
4

Tm Tm
A A

µµ π
π

− −= ⋅ =  

(Memorize the number!) 
As we shall see later there is a close relationship between these constants appearing in the 
magnetic field and in the electric field.  

(30.7) 2 12 8 6 70
0 0 0 0

0

11; 8.854 10 ; 8.98 10 ; 1.257 10 ; 10
4 4ec k µµ ε ε µ
πε π

− − −= = ⋅ = = ⋅ = ⋅ =  

 
Comparing the formulas (30.2) and (30.3) we suspect that the current density plays the role of ω 
in (30.1), thus we guess: 

(30.8) 0 02

 is proportional to . vq

v and v r B j and B j r

B j r with j n q

ω ω µ µ∇× = = × ⇒∇× = ∝ ×

× =

   
 

    


 

 

 

The correct answer as to the mathematical expression for an infinitesimal magnetic field created 
by an infinitesimal current segment is given by: 
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(30.9) 2
r

B
Ids udB k

r
×

=
 



 

In both electric and magnetic fields one finds experimentally a decrease of the magnitude of the 
various fields with 1/r2. 
The remaining constant can be double checked through measurement, and we find the constant is 
equal to  

(30.10) 0

4Bk µ
π

=  

In its final form this law is known as the law of Biot and Savart : 
 

(30.11) ( ) 0 0 0 1 1
23 2

1
4 4 4

r rI I Ids u ds uds rdB r
r r r r

µ µ µ
π π π

× ××
= = =

−

    



 

 
We get the total field by integrating over the whole length of the current carrying wire. 
The unit vector ru points from the location 1 1 1 1, ,r x y z=

  of the moving charges vdQ Ids⋅ =
  to 

the point , ,r x y z=
 where we calculate the magnetic field. 1

1
r

r ru
r r
−

=
−

 



 

 

It is often useful to give the charges dQ and their velocity the index 1, as a reminder that the 
location of the current segment (the charge density, the charge etc) is different from the location 
where we calculate the magnetic field. This is what we also did in the calculation of the electric 
field and the electric potential. The charges create fields everywhere in space. Static charges 
create electric fields, moving charges create additional magnetic fields. 
 
(There is a direct derivation of the law of Biot-Savart based on Ampere’s law  in the addendum 
part of the  lecture notes of the previous chapter 29. Most text books don’t give you this 
derivation and start simply with a postulate for the law of Biot-Savart.)  
 
30.1b Law of Biot-Savart for a single charge: 
For a single  charge q moving with velocity vwe just need to replace  
 

(30.12)                                         
 with v

 =dQ v

I ds q
dQ ds dsds q q
dt dt dt

⋅

⋅ ⋅ ⇒ ⋅ =

 

 

   

and get the total magnetic field, not just the infinitesimal one, which requires integration over the 
whole length of current. 
 

(30.13) 
( ) 0 0 0

23 2
1

1

4 4 4

If the charge q is located at the origin, the vector  is obviously 0.

rq q qv uv r v uB r
r r r r

r

µ µ µ
π π π

×× ×
= = =

−
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We use the same convention as when we calculated the electric field. The location where we 
calculate the magnetic field is given by r . The location of the moving charge v ( )q or Ids  is 

given by 1r
 . The vector from the 

moving charge to the location of 
the magnetic field is given by 

1r r−  .The unit vector B


( ) ( )
1 11 1
2 2

1 1 1

,
r

x x y yr ru
r r x x y y

− −−
= =

− − + −

 



 

 

points from the moving charge q 
to the location of the magnetic 
field ( )B r



. 
 
 
 
 
 
 

Example: Magnetic Field of the electron in the Bohr Atom: 
An electron moving in a circular orbit around the proton (from Bohr’s model of the atom) creates 
a magnetic field of 12.5T at the center of the atom, which is a huge magnetic field. (See problem 
1 of this chapter.) In that case of circular motion the relationship between Ids and qv becomes 
nice and clear: The time interval dt becomes the period T; ds=rdθ=r2π 

(30.13) 2 2r dQ qqv q Ids ds r
T dt T
π π= = = =

 
The magnetic field curls around the orbit of the electron and creates a resultant magnetic field at 
the location of the proton. It is perpendicular to the orbital plane of the electron. 

(30.14) 6 100 0
3 2

vv 12.5 ; v 2.19 10 ; 0.529 10
4 4

q qr mB T r m
r r s

µ µ
π π

−×
= = = = ⋅ = ⋅

 

 

 
 
 
 
30.1c Calculation of the magnetic field for various situations: 
Example 1: Let us calculate the magnetic field created by a long straight wire. Obviously, the 
magnetic field will circle around it. If we assign the direction of the current to the positive y-
direction going to the right, the magnetic fieldlines will go in the positive x direction Bx above 
the wire and the negative x direction below the wire. ds and r  lie in the y-z plane, consequently, 
dB


is perpendicular to that plane, in the x direction. The vector r points from the location of the 
current segment to the location where we calculate the magnetic field. (To do this more 
consistently we should draw the vector as 1r r−  , r being the vector from 0 to the location of B, 
and 1r

 being the vector from 0 to the location of the charge q1 or the current segment 1ds .) Using 

ds  

r  

B


 

 

1r r−   

1r
  

vIds q=
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the right hand rule we draw the 
appropriate picture of the coordinates. 
(30.15)

0 01 1
2 2 2

sin
4 4

r
x

dy j u IdydB i I i
r y z

µ µ θ
π π

⋅ ×
= =

+





 

(Note that  i and j
 

are unit vectors, not 
currents.) 
The magnitude of the cross-product in 
the numerator rds u×  is equal to the 
product of the perpendicular components 
of these quantities, namely 1 sindy θ : 

also: sin  or 
sin

zz r rθ
θ

= =  

We need a relationship between dy1 and 
dθ: 

2
1 1 2

1cot ; cosec
sin

y z dy z d zdθ θ θ θ
θ

= = − ⋅ ⋅ = −  1 cot 0y π θ−∞ < < +∞⇒ ≤ ≤  

(Reminder: 2 2
2 2cot cosec ; tan sec

sin cos
d d d dd d

d d
θ θθ θ θ θ θ θ

θ θ θ θ
−

= − ⋅ = = ⋅ = ) 

 The integrand can therefore be written as: 
 

(30.16) 


2

1
2 2 2 2 2

sin 1 sin sinsin
sin sin

dy
r

dy zd z d d
r z z z

θ θ θ θ θ θθ
θ θ

− − −
= = =



 

We have the total integration from θ =π with the current element to the far left ( 1y = −∞ )to θ=0 

for the current element to the far right at y = +∞ .  

(30.17) ( )
0

0 0 0sin 1 cos 0 cos
4 4 2x

I Id IB
z z zπ

µ µ µθ θ π
π π π

−
= = − =∫  

We often prefer to call the perpendicular distance from the wire r, and therefore write this 
important result as: The magnetic field created by a long wire with current I circles around the 
wire and has the magnitude: 

(30.16) 0 02
4 2

I IB
r r

µ µ
π π

= =
 

 
 
Any short segment of a straight wire of length L, carrying a current I in the counter 

clockwise direction, creates a magnetic field on the bisector 
at height h. This magnetic field is perpendicular to the page and 
its magnitude is given by: 

x 

y 

z 

1 1ds dy j=




 

( )xdB z i


 
2 2r y z= +  

     θ  

r  

( )sin sinθ π θ= −

h 

L/2 

r 

θ1 θ2 
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(30.17) 
( ) ( )

1

0 0
1 2 1 1

cos

20
1 1

cos cos cos cos
4 4

2cos ;cos
4

L

I IB
h h

IB
h r

θ

µ µθ θ θ π θ
π π

µ θ θ
π

−

 
 = − = − −
 
 

= =



 

  

(30.18) 0
12cos

4
IB
h

µ θ
π

=  

We could also have used the following approach: 

(30.19) 

( )

0 0
2 2 2

0 0
32 2 2 2

2 2 2

sin
4 4

4 4

r
x

dy j u IdydB i I i
r y z

Idy z zIdyi i
y z y z y z

µ µ θ
π π

µ µ
π π

⋅ ×
= = =

+

=
+ + +





 

 

 

The integral needed is given by: 
(30.20)

 ( )
3 2 2 2

2 2 2

2 2 2

1 [1 1];

lim
y

dy yz z
zz z yz y

y y
z y z

∞
∞

−∞ −∞

→∞

= = +
++

=
+

∫

2
1

y
=

+

 

 
 

 
Example 2: Magnetic Field Created by a Magnetic Dipole. 
In the previous chapter we saw that a current loop inserted in a magnetic field experiences a 
torque. We defined the magnetic moment of N loops: 
(30.21)  

NIAµ =


  
The torque experienced by such a loop in a magnetic field equals : 
(30.22)  

Bτ µ= ×


   
and its potential energy is : 
(30.23)U Bµ= −



  
A magnetic moment, i.e. a loop of current creates of course also a magnetic field. 
 
When we calculate the magnetic field created by a current along a circular loop on the central 
axis, we need to know the angle between the velocity of the charges in the loop and the radius 
vector pointing to the central axis along which we need to calculate the magnetic field. The 

ds  

rr r u= ⋅
 

 

dB r⊥




 

z 

R


θ 
 

θ 
 

zdB k⋅


 

x 

y 
zdB k R⋅ ⊥
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angular relationships are the same as in the relationship between velocity, angular velocity, and 
radius vector. 

(30.24) 0
3v=  like in 

4
Ir dB ds r
r

µω
π

× = ×


     

Find the angle between and :ds r   
In any such relationship the vector ds lies in the plane defined by the circular motion and the 

vector r points from the velocity vector to the location of 
B


on the central axis. 
Now,  just like vds r r⊥ ⊥

   

, Proof: ( )v= 0r r rω⋅ ⋅ × =
    (if 

two vectors in a mixed product are the same, or are parallel 
, the mixed product is 0.) 
The vector dB r⊥



 and ⊥ to the plane defined by ds and r  . 
(Reminder of the properties of the cross product: 

( )
( )

0

0

C A B C A A B A

C B A B B

= × ⇒ ⋅ = × ⋅ =

⇒ ⋅ = × ⋅ =

      

   

 
 
Let us calculate the B-field on the axis perpendicular 
through this current carrying loop.  
By symmetry we see that only the z components of the field 
will add up. All other components cancel as we go around 
the loop. So we calculate the magnitude of the B field and 
then project it on the z-axis. As ds is tangential to the circle 

the angle between it and r is a right angle. Therefore the magnitude of the cross product is: 
1 sinrds u ds dsθ× = ⋅ ⋅ =

   
 

(30.25) 0 0
2 2;

4 4
rI Ids u dsdB dB

r r
µ µ
π π

×
= =

 



 

 

(30.19) 
2 2 2

cosz

r R z
dB dB θ
= +
=

 

Look at the angle θ between the z-axis and dB


.  
 
As the vector dB



is perpendicular to the vector r , the angle θ is also the angle between and Rr


 . 
(Angles with their arms perpendicular to each other are the same.) 

2 2
cos R R

r R z
θ = =

+  
The integral becomes: 

v

r

v= r
ω

ω×



 

2 2

2

r constant
r 2 0 v

r
d drr r
dt dt

= =

= ⋅ = ⇔ ⊥



 

  

 

v
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(30.27)
( ) ( )  ( )

0 0 0 0
3 3 32

2 2 2 2 2 22 2 22

cos 2
4 4 4 4z

R

I I I Ids Rds R RB ds R
r R z R z R zπ

µ µ µ µθ π
π π π π

= = = =
+ + +

∫ ∫ ∫  

 

We integrated ds around the circular loop of radius R. Note the differences between R and r. 

(30.28) 
( )

2
0

3
2 2 22

I RB
R z

µ
=

+
 

This is the magnetic field Bz along the central z-axis. 
 
At the center of a loop with N coils we get z=0 and consequently: 

(30.29) 0

2
NIB
R

µ
=

 
Compare this to the direct calculation from (30.13) for an electron in the orbit around a proton. 
There, the current I simply becomes q/T: 

(30.30) ( )
2

0 0 0
2 2

v
4 4 2

r
Trq q quB r B

r r RT

πµ µ µ
π π

×
= ⇒ = =

 



 

 
At a great distance from the loop, R becomes negligible in the denominator and we get for the 
magnetic field on the z-axis: 

(30.31) 
2

0
32

I RB
z

µ
=  

 
Note that the integration took place over the closed loop of radius R, in which the current is 
running. The magnetic field at the point P depends only on the fixed distances z and R. Note also 
that the magnetic field lines around a circular loop of currents resembles very much the field 
lines around a permanent bar magnet, which suggests, what has been stated before, namely that 
all magnetic fields without exception arise from currents. There are no magnetic monopoles. 

0 0curlB j and divBµ= =
 



 
We only calculated the magnetic field line on the central axis through a loop of current, which 
forms a closed loop at infinity. We expect that, as we get away from the central axis, the 
magnetic fields loop around the current. For a few field lines it would approximately look like  
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this.  
Helmholtz coils: 
Now, calculate the magnetic field between two coils with N turns of equal size and with equal 
currents, an arrangement called Helmholtz coils. The distance between the two coil centers is 
equal to the radius R of either coil. We can show that in the center between these two coils the 
magnetic field is uniform. 

If we put the origin of the z axis into the center of the 
left coil, the left coil creates a magnetic field at the 
location z according to formula . The field created by 
the second coil will be at location z’=z-R. (For z’ =0 
we are at z=R.) Adding up the fields of the two coils 
we get: 
(30.31)
 

( ) ( )( )

( ) ( )

20
1 2 3 3

2 2 222 2

20
3 3

2 2 2 22 2

1 1
2

1 1
2 2 2

res
NIB B B R

R z R z R

NI R
R z R z Rz

µ

µ

 
 

= + = + = 
 + + −
 

 
 + 
 + + − 

 
 
To show that this resultant field is uniform at the midpoint z=R/2 between the two coil centers, 

we need to check whether its change with respect to z is 0, 0?resdB
dz

=  The second derivative 

must also be equal to 0 in order to ensure that we don’t have a maximum or minimum at that 
location. 
 

current in  current 
out  

clockwise B


 
counter- 
clockwise B



 

z 

R 

NI 

R 
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(30.31)

 

( ) ( ) ( ) ( )
3 3 5 5

2 2 2 2 2 2 2 22 2 2 2

5 5 5 5
2 2 2 22 2 2 2

2 22 2 2

1 1 3 2 2 2 R;for z=  we get:
2 22 2 2 2

3 2 3
2 2

2
44 4 4

d z z R
dz R z R z Rz R z R z Rz

R R R R R

RR R RR RR R R

   
−   + = − +   

   + + − + + −   
   
   
   −   − + = − −
             + −+ + +                  

0=



 

The same thing happens for the second derivative, i.e. both 
2

20 and 0 at
2

res resdB dB Rz
dz dz

 = = = 
 

 

At z=R/2 the quantities in the parentheses of the denominator become the same, and the 
numerators cancel. 
Thus, we have shown that the magnetic field at the midpoint of the Helmholtz coils is uniform 

and has the value:  
 
 

(30.31) 

3 3
22 220 0 0

3 3
2 2

2

2 4 4
2 5 5

4

NI NIR NIB R
R RRR

µ µ µ

 
 
     = = =     

     
 +      

 
 
 
 
30.2 Magnetic Force Between 2 Conducting Parallel Wires : 
If we place a conducting wire  with current I2 and length L into a magnetic field created by an 
infinitely long wire with current I1, the wire L feels a magnetic force according to the earlier 
chapter 29.2 
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( ) 2 1B
line line

dF I ds B I L B= × ⇒ ×∫ ∫
   



 
If the magnetic field 1B



 in this equation comes from an infinitely long parallel wire with current 

I1 : 0 1
1 2

IB
r

µ
π

= one can easily see that the two wires will be attracted to each other, if they carry 

like charges  moving in the 
same direction. They will 
be repelled if they move in 
opposite directions. Both 
wires lie in the same plane 
of the page, one above the 
other. The magnetic field 
of I1 curls around the wire 
and points to the outside of 
the page (towards the 
viewer) at the wire lying 
above it. Use your right 
hand, with the thumb 
pointing in the direction of 
current I1. The fingers of 
your right hand point in the 

direction of the magnetic field. Now, in order to determine the direction of the force on the wire, 
use your right hand again. The thumb points in the direction of I2, your index finger points in the 
direction of the magnetic field 1B



, and your middle finger points downwards in the direction of 
the force.  
 

(30.32)
1

0 1
2 1 2 1 2 2B

IF I L B I LB I L
r

µ
π

= × = =
  

 

(According to Newton’s third law the force of the magnetic field of I2 on I1 is equal and opposite 
in direction to the one just calculated. In the addendum of chapter 29, you can find  the proof that 
Newton’s third law is not true for currents which are not parallel or antiparallel to each other. 
Newton’s laws apply strictly to classical, non-relativistic physics. Electromagnetism is actually a 
relativistic effect.) This formula remains correct even if the wire of I2 is short. 
 
It makes more sense to find the force between two wires per unit length: 
 
 

(30.33) 0 1 2

2
B I IF

L r
µ
π

=  

30.3 Ampere’s law and Stokes’ Theorem.  
Whenever our situation displays a nice symmetry, there is another method for calculating the 
magnetic field, which is reminiscent of Gauss’ law. It is called Ampere’s law, which we have 

I1 

I2, L 

1B


1 1force on L due to magnetic field BF B=
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encountered in its local (differential) form (30.3), when we derived the law of Biot-Savart. It is 
the law that says that the magnetic field curls around the current density: 
 

(30.34) 0curlB jµ=




 
 
Whenever we have a current density j



in a wire we arrive at the value for the current I itself by 
using the definition of the current as the flux of the current density through the cross-section of 
the wire carrying the current I, i.e. we perform a surface integral over a closed surface.  
(30.35) 

 integralsurface

I j dA= ⋅∫∫




 

This surface is any surface through which the current passes. We only get contributions to the 
integral wherever the current density in not 0. 

 
 
If, for example the wire 
has a circular shape of 
radius R, the current 
would be I=jA=jπR2. 
If we apply the same 
integration to both sides 
of the differential form of 
Ampere’s law, we face 
the task of  having to 
integrate on the left side 
over curlB



, like here: 
  
 (3

A

curlB dA∫∫


  

Such surface integrals can be converted to path integrals over the boundary of the above surface 
(circulation) through Stokes law which states:  
 
30.3 a Stokes Law: Quick and dirty proof: 
Let us do this directly and calculate the circulation (line integral) of a vector field E around a 
rectangle with sides ∆x and ∆y. The lower left corner point of the square has the coordinates 
(a,b). We must calculate ( ),xE x y dx⋅ along the horizontal lower and upper segments of the 

rectangle, and ( ),yE x y dy⋅ along the vertical segments on the right and left of the rectangle. 
 

( ) ( ) ( ), , ,x yE x y ds E x y dx E x y dy⋅ = ⋅ + ⋅∫ ∫
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              y-axis 
 
 
 
 
 
 
 
 
 
 x-axis 
 
The total circulation is equal to: 
(30.21) ( ) ( ), , ( , ) ( , )x y x yE ds E x b x E a x y y E x b y x E a y y⋅ ≈ ⋅∆ + + ∆ ⋅∆ − + ∆ ∆ − ⋅∆∫







 
Let us assemble the terms with the factor ∆x and ∆y respectively: 

(30.22) 
( ) ( )
( ) ( )

, ( , ) ( , ) ,

, ( , ) , ( , )
x x x x

y y y y

E x b x E x b y x E x b y E x b x

E a x y y E a y y E a x y E a y y

⋅∆ − + ∆ ∆ = − + ∆ − ∆  
 + ∆ ⋅∆ − ⋅∆ = + ∆ − ∆ 

 

We multiply the first expression by ∆y/∆y, and the second by ∆x/∆x: 

(30.23) 

( )

( )

( , ) ,

, ( , )

x x

y y

E x b y E x b x y
y

E a x y E a y y x
x

− + ∆ − ∆ ⋅∆  
∆

 + ∆ − ∆ ⋅∆ 
∆

 

In the limit both of these terms can be written as the respective partial derivatives: 

(30.40) 

( ) ( ) ( )

( ) ( ) ( )

, ( , ) , ,

( , ) , , ,

y y y y

x x x x

E a x y E a y E a y E x y
x y x y dxdy

x x x
E x b y E x b E x b E x y

x y x y dxdy
y y y

 + ∆ − ∂ ∂  ∆ ∆ ≈ ∆ ∆ ⇒≈
∆ ∂ ∂

+ ∆ − ∂ ∂
− ∆ ∆ ≈ − ∆ ∆ ⇒≈ −

∆ ∂ ∂

 

Thus, the whole circulation becomes: 

(30.41) 
( ) ( ), ,y xE x y E x y

E ds x y y x
x y

∂ ∂
⋅ ≈ ∆ ⋅∆ − ∆ ⋅∆

∂ ∂∫




  

On the right hand side we have now the approximation of a double integral: 

(30.42) 
( ) ( ) ( ) ( ), ,, ,y yx x

A

E x y E x yE x y E x y
x y y x dx dy

x y x y
∂ ∂ ∂ ∂

∆ ⋅∆ − ∆ ⋅∆ ≈ − ⋅ 
∂ ∂ ∂ ∂ 

∫∫  

This is Green's theorem, which is nothing but the third component of Stokes' theorem in the 
plane: The circulation of any vector-field E



 around a closed loop is equal to the surface integral 
of x y y xE E∂ − ∂  

j y⋅∆


 
j y− ⋅∆


 

( , )xE ds E x b x⋅ = ∆


  

( , )xE ds E x b y x⋅ = − + ∆ ∆


  

( , )

the x-value is fixed at a+ x, the y-value is variable
yE ds E a x y y⋅ = + ∆ ⋅∆

∆





 

i x− ⋅∆


 

i x⋅∆


 

( , )yE ds E a y y⋅ = − ⋅∆
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(30.43)

Regular Stokes theorem in three dimensions:
The line integral of a vector field along a closed loop is equal to the 

surface integral of its curl :  . The surface is any surface

whic
A A

E ds E dA
∂

⋅ = ∇× ⋅∫ ∫∫
  





( ) ( )

h has the closed loop as its boundary.
It the vector field is a funtion of x and y only, the curl is reduced to the z-component. 
The theorem is then called Green's theorem.

, ,y x

A

E x y E x y
E ds

x y∂

∂ ∂
⋅ = −

∂ ∂

∇

∫






( )
A

dx dy

E
z

 
 
 
  ⋅ ⋅
 
 

× 
 

∫∫




 

Example: Calculate the circulation of the vector field 5 , 7 , 0B y x= −


around a rectangle with 
sides a and b:  
Answer: 0, 0, 12 12curlB k= − = −




 
The third component of this vector is parallel to the surface vector on the rectangle, and it is a 
constant. Therefore, the surface integral is the simple product 12

A

k dxdy k− ⋅ =∫∫
 

-12∙a∙b.  

5 7 5 0 7 5 12 ; (0,0) ( ,0) ( , ) (0, ) (0,0).ydx xdy dx ab ba ab to a to a b to b to− = ⋅ ⋅ = − − = −∫  
The Green theorem (Stokes theorem in the plane)  is usually stated in terms of a vector field with 
components P=Ex and Q=Ey; P(x,y) is the x-component, Q(x,y) is the y-component: 
 

(30.44) ,
A A A A

Q PE ds P Q ds Pdx Qdy dx dy
x y∂ ∂ ∂

 ∂ ∂
⋅ = ⋅ = + = − ⋅ ⋅ ∂ ∂ 

∫ ∫ ∫ ∫∫


 

  

 

If we choose Q=x and P=-y, the rhs becomes a surface integral: 
 

(30.45) 2
A A

Q P dx dy dx dy
x y

 ∂ ∂
− ⋅ ⋅ = ⋅ ∂ ∂ 

∫∫ ∫∫  

With this choice we arrive at a way to calculate the surface of an area by means of the circulation 
around this area: 
 
This circulation is equal to the surface integral of curlB



. But we know that 0curlB jµ=




.The 

surface integral of 0 jµ


is 0 0
A circle

j dA Iµ µ
=

=∫∫








. Therefore, we have 0
02

2
IrB I B
r

µπ µ
π

= ⇒ =  

 

(30.46) 2
A A

xdy ydx dx dy
∂

− = ⋅∫ ∫∫
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For example, an ellipse can be written in parametric form as: 
 
(30.47) cos ; sinx a y bθ θ= =  
Show that the area of an ellipse equals A=abπ  
 
Example: Now, assume that we have a current density entering into the page. We know from 
earlier calculation that a magnetic field surrounds the current density. This means that the 
direction of the magnetic field around any loop, circling the current density is parallel to the 
tangential unit vector: B Buθ=



 The circulation of this vector is given by: 

(30.24) 2
circle circle

B ds B rd rBθ π⋅ = ⋅ =∫ ∫




 

 

End of intermission. 
 
 
 
 
Stokes' theorem: 
The flux of  the curl of a vector field through any (simple) open surface is equal to the circulation 
of the vectorfield around a closed boundary of the surface. (In short: Surface integral of the 
curl of the vector-function equals line-integral of the function= circulation.) Think of the 
surface and the rim in analogy to a butterfly net and the rim that bounds it. The butterfly net can 
take on any shape, as long as it refers to the same rim.  
 

(30.48) 
the flux of curlB the circulation of B
through any simple surface A around the closed 
with the closed boundary A boundary of  any surface A

A A A

B dA curlB dA B ds
∂

∂

∇× ⋅ ≡ = ⋅∫∫ ∫∫ ∫
 

    





 



 

 
This mathematical law of vector calculus is correct for any vector field (with the correct 
mathematical assumptions). The expression "circulation" is the anologue to flux. It is a line 
integral for a closed loop of any kind. It turns out that this law helps us to calculate the magnetic 
field very quickly in situations where there is a particular symmetry involved, e.g. cylindrical or 
spherical symmetry. In those situations the magnetic field is constant along the line of 
integration, and the integral becomes a simple product between the magnetic field and the length 
of the boundary line. We call the closed surface A and its boundary A∂ . 
 
Just a reminder: As 0divB =



always, the total or net flux of the magnetic field across any closed 
surface is always 0.  
 
It is now easy to see how useful Stokes’ law is to calculate the magnetic field. 
(Local or differential form of Ampere’s law.) 
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(30.49) 0curlB jµ=




 
 
We see immediately that Stokes law can be used here : 
(30.50)

 

0

0

the flux of curlB
through any surface A

 apply the surface integral (flux) through an open surface A to this equation:

                                                  
A

curlB j

curlB dA

µ

µ

= ⇒

=∫∫











0

A

the circulation of Bthe flux of curlB
around thethrough any surface A

whose closed boundary is A

                                                   

open surface A

A

i dA I

curlB dA B ds

µ

∂

∂

=

= ⋅

∫∫

∫∫ ∫







 








0

 closed boundary 
of the surface A

Iµ=


 

 
In short, Ampere’s law states that the line integral of a the magnetic field B around a loop 
through whose surface a current flows is proportional to that current. (Remember that both the 
magnetic field and the current density are vector fields with vector components, and each 
component having spatial variables x, y, z) 
 

(30.51) 0

0 0
A

Ampere's law: 

differential form: 

in integral form: 
A

curlB j

B ds I j dA

µ

µ µ
∂

=

⋅ = = ⋅∫ ∫∫











 

Let us apply this law also to the velocity vector field:  
(30.52) v= rω×

 

 
 
 

(30.53) 
2

v 2

v v2 2 v
A A

curl dA dA

ds r r r

ω

π ωπ ω

⋅ = ⋅

⋅ = = ⇒ =

∫∫ ∫∫

∫






 



 

 
Examples for using Stokes’ law in the calculation of the magnetic field: 
 
30.3a Magnetic field created by a very long wire with current I. 
If we apply this law to the calculation of a magnetic field created by a long wire we get very 
quickly the following result: At a distance r from the line of current we draw a circle with radius 
r. The current flowing through it is I. The line element ds is parallel to B and has the value rdθ. B 
is only dependent on r. 
The integration gives simply: 
(30.54) 02 rB Iπ µ=  
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(30.55) 0

2
IB
r

µ
π

=  

 

(30.56) 0

2
IB
r

µ
π

=  

 
This is of course the same result  which we obtained when calculating this with Biot-Savart’s 
law. 
30.3b Magnetic field inside a wire with uniform current density j. 
Now, if this wire is a cylinder, we can also easily calculate the magnetic field created by an 
inside portion of the current, i.e. the magnetic field inside the conducting cylindrical wire itself: 
We choose a  cylindrical surface with radius r1. The circulation of the magnetic field around the 

boundary of this surface is 12 r Bπ which 
is equal to 2

0 1j rµ π Thus, the magnetic 
field between the two cylindrical 
surfaces is given by: 
(30.25)

2
0 1 0

1 2
1

;
2 2

r j j I IB r j
r A R

µ π µ
π π

= = = =  

The magnetic field increases linearly 
with r1 from the center of the wire to its 

boundary with maximum radius R. 
 
30.3c The Magnetic Field of a Solenoid. 
A solenoid is a long wire wound in a spiral fashion around an interior cylindrical space of length 
L. If this cylinder is long enough, there is a considerable stretch inside of the cylindrical space in 
which the magnetic field will be uniform. We know this from our calculation of the magnetic 
field at the center of a ring of current, see . There is a magnetic field at the center of any circular 

0 0  The surface A contributes only 

to the integral where the current density intercepts it.
A

I j dAµ µ= ⋅∫∫





 

2
A A

curlB dA B ds rBπ
∂

⋅ = ⋅ =∫∫ ∫
 

 





 

B


r  

I1 

B


 
 r1 

 R 
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current, and this field is perpendicular to the surface of the loop, the z-axis in our example. If we 
put a great number of coils adjacent to each other, tightly wound , each of these loops will create 
a magnetic field, all of them along the central axis of the solenoid. 

 
 
For an idealized situation we ignore the magnetic field outside the solenoid (it is weak), and get 
for the circulation of B simply BL. If there are N loops, N currents will intercept the rectangular 
area between the dashed lines; we get  
 

(30.58) 0
0 ;NI NB nI n

L L
µ µ= = =  

  
30.3d The magnetic field created by a toroid with N loops and radius r. 
 
A toroid is a long solenoid bent into a circular shape. Let’s calculate the magnetic field created 
by N loops inside of the toroid at a distance r from the central axis.Using Ampere’s law, we see 

that the Stokes-Ampere surface (a circular sheet 
of radius R, concentric with the circular magnetic 
field) intercepts the current N times, whereas the 
circulation of the magnetic field inside is equal to 
the circumference of the circle times B: 

02 rB NIπ µ= ⇒                                                               

(30.59)          0

2
NIB
r

µ
π

=  

 
 
 

I 

N wires intercept the surface 0 0jdA NIµ µ=∫∫




 

I 

B →


 

0B =


 
0B =



 

A A

curlB dA B ds LB
∂

⋅ = ⋅ =∫∫ ∫
 

 





Iin 

Iout 

r a 

b 

N loops in the torus 
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30.3e Magnetic field of an infinite conducting sheet of current: 
Assume that the cross-section of the sheet is perpendicular to the page, and the current is coming 
out of the sheet towards you. We draw a segment of this sheet:  

 
The magnetic field tries to curl around the sheet and cannot 
do so without intercepting the current, which it cannot do 
either. The only thing left for it to do is to form a magnetic 
field parallel to this sheet on both sides of it. We choose as 
our surface the dashed Ampereian surface which is 
intercepted by the current. The total current flowing through 
this conducting sheet is equal to the current density times the 
cross-sectional area A=L·d. I jA jLd= = . 
A magnetic field exists only along the vertical sides of length 
L. The circulation of L around the chosen rectangle is 0 on 
top and bottom and equal to BL on each side: 
 

(30.26)
0 0

0 0

2 A= Ld 
Ld d

2 2

B L j j
j jB
L

µ µ
µ µ
=

= =
 

(30.27) 0

2
jdB µ

=  

 
 
 
 
 
30.4 Gauss’ law in Magnetism. 
As mentioned earlier, magnetism does not have any sources, or monopoles. Magnetic field lines 
close in themselves.This is the opposite to electrostatic field lines, which always emerge from a 
source ( a positive charge) and disappear in a sink (a negative charge). This contrast is expressed 
by the two different differential formulas: 

(30.28) 
0

 for electrostatic fieldsdivE ρ
ε

=


 

and  

(30.29) 0 for all magnetic fieldsdivB =


 
 

……
……
……
… 
 
… 
… 
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In the case of the electric field we used the mathematical Gauss’ law to calculate the electrostatic 
field in many situations with a simple geometry. We obtained Gauss’ law for electrostatics by 
applying a volume integral to equation (30.28). 

(30.30) 
0 0 0

0

V

V V

E dA

V

QdivE divEdV dV

QE dA

ρ ρ
ε ε ε

ε

∂

⋅

∂

= ⇒ = =

∫∫

⋅ =

∫∫∫ ∫∫∫

∫∫



 









 

The same approach leads to the surface integral of the magnetic field, for which we can also 
calculate the total flux through a close surface. This is always 0. 
Note: distinguish carefully between the flux and the total flux through  a closed surface. The 
latter is always 0 for a magnetic field. 
(30.31) , 0B total

V A

B dA
∂ =

Φ = ⋅ =∫∫




 

 
30.5 Displacement Current and the General Form of Ampere’s Law. 
The integral form of Ampere’s law states that the circulation of a magnetic field around a closed 
curve equals the current intercepted by any surface which has the closed curve as a boundary. 
 
Now, let us apply this information to a capacitor that is being charged or discharged. In this 
situation we know that there must be a changing electric field ( )E t



 between the plates of the 
capacitor. 
However, we can create two Amperian surfaces based on the same circulation around the 
conducting wire, one surface S1 that intercepts the wire with its current, and another surface S2 
which intercepts the empty space between the capacitor plates, where we have the changing 

electric field. As we are 
getting the same magnetic 
field, we must also get the 
same “current value” in the 
empty space between the 
capacitors.  
We know there are no 
charges flowing between the 
plates of the capacitor, but 
we also know that there is an 
electric field there, created 
by the charges on the the 
capacitor plates. 
The electric field between 
the plates of a capacitor is 

0

E σ
ε

=  We get the total 

( ) 0
0

0 0 0

; ( )

E

A

E t Q t A A

ddQ dE dI A E dA
dt dt dt dt

σ σ ε
ε

ε ε ε

= = =

Φ
= = = =∫∫









 

S1 

S2 

( )B t


 

0d
Ej
t

ε ∂
=

∂





 

j


 
j
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charge by multiplying E by the surface A, which is also the flux of E through the surface 

E
A

E dAΦ = ⋅∫∫




.  

(30.31)                             0 0 0
0

;
A

Q A E E Q EA E dAσσ σ ε ε ε
ε

= = ⇒ = ⇒ = = ⋅∫∫


  

To get an equivalent current, designated as displacement current Id, we take the derivative of Q 
with respect to time.  
 

(30.32)                                               0 0

E

E
d

A

ddQ dI E dA
dt dt dt

ε ε

Φ

Φ
= = ⋅ =∫∫





 

Equation (30.32) represents the integral form of this situation, after integration over the surface. 
By dividing the equation by the surface area A we get the local form.  
(30.33) ;d d E

A A

I j dA E dA= ⋅ Φ = ⋅∫∫ ∫∫
 



 

(30.34) 0d
Ej
t

ε ∂
=

∂





 

 
Thus we have discovered the concept of a deplacement current, and its density, which must be 
exactly equal in value to the current and current density in the wire, respectively. 

(30.35) 0 d 0 0

 flux of E through A

 and Id d
surface surface surface

E d Ej j dA EdA dA
t dt t

ε ε ε∂ ∂
= = = =

∂ ∂∫∫ ∫∫ ∫∫


 

  
 



 

(30.36) 0
E

d
dI

dt
ε Φ

=  

 
We realize that a magnetic field cannot only be created by a current in a wire, but also by a time 
changing electric field ( )E t



 as it appears between the plates of a capacitor being charged or 
discharged. The displacement current density  must be added to the right side of Ampere’s law as 

0 0
E
t

µ ε ∂
∂



= 0 djµ


. 

(30.37) 


0 0 0

dj

EB j
t

µ µ ε ∂
∇× = +

∂




 


 

This gives us the complete form of the so-called Ampere-Maxwell law: 
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(30.38)    



0 0 0

0 0 0
boundary of
surface A

E

flux of E

EB j
t

dBds I
dt

µ µ ε

µ µ ε

∂
∇× = +

∂
Φ

= +∫



 








 

 
When there is no regular current but just a time changing electric field we still get a magnetic 
field, which, not surprisingly, will also change in time: 
 

(30.38)      0 0
EB
t

µ ε ∂
∇× =

∂



 

 

Time changing electric fields ( , )E r t


create magnetic fields ( , )B r t


around them. 
 
30.6 Magnetism in Matter (Optional). 
According to the classical Bohr model for atoms electrons are in orbit around the nucleus. 
Thus, they create a magnetic field inside them, because they constitute, in effect, magnetic dipole 
moments. 
 
In chapter 29 we defined the  dipole moment of a current as the product between the current of 
the loop times the area of the loop, in the direction of the normal to the surface of this loop: 
(30.38) IAµ =



  

We calculated the magnetic field of a dipole earlier in  
2

0
32

I RB
z

µ
=  (long distance from the 

center of the coil.) and 0 0

2 2
I qB

R RT
µ µ

= = at the center of the loop. 

This is a current loop (a loop of moving charges) which will experience a torque Bτ µ= ×


  when 
placed into another magnetic field, and will consequently involve a potential energy U Bµ= − ⋅





Now, we can consider any electron in orbit around its nucleus as such a current loop. Let us 
calculate its physical quantities related to its electric charge. The current consists of a single 
electron, circulating around the nucleus in the time T, where T is the period. It also has an 
angular momentum vL m R= , which points in the opposite direction of the magnetic moment. 

(30.38) v 2; v=
2

dQ e e RI
dt T R T

π
π

= = =
 

It is convenient to express the magnetic moment in terms of the angular momentum L: 
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(30.38)
2v 1 evR =

2 2 2m
angular momentum L=mvR

eI A R e L
R

µ π
π

 = ⋅ = =  
    

 

(30.38) ( )1 ; 1,2,3...L l l l= + =  
for l =1 we get the smallest magnetic moment of an orbiting electron 

    (30.38)
e e = 2

2m 2m
Lµ    = ⋅   

   
  

 
 
The magnetic moment of the orbital electron points in the opposite direction of the angular 
momentum, because of the negative charge for the electron.  
In the Bohr model of the atom we assumed that the angular momentum of the electron was equal 
to a multiple of , L n=  . This was the beginning of quantum theory which ultimately proved 

that the angular momentum is rather given by the formula (30.38) ( )1 ; 1,2,3...L l l l= + =  
In this formula  l = 1,2,3.. is called the orbital quantum number, an positive integer value which 
relates to the orbital angular momentum of the electron.  
The electron all by itself has a so-called spin quantum number of ½. The spin can be visualized 
or imagined as a rotation of the electron or proton around their own respective axes. And its spin 

angular momentum is given by: (30.38) 3( 1)
2SL s s= + =   

The spin magnetic moment of of an electron, called the Bohr magneton, turns out to be: 
 
(30.38)

249.27 10 Bohr magneton 
2S B

e

e J
m T

µ µ−= = ⋅ =


 

Atomic magnetic moments are often 
expressed as multiples of the Bohr magneton, 
which is a kind of simple unit for those 
values. 
 
Summary of permanent magnets: 
Some metals display permanent magnetism, 
and are called ferro magnetic, due to 
permanent circular domains of currents inside 
the metallic structure. This magnetism can be 
enhanced by placing the magnet into a 
magnetic field. In turn, the magnetic field of 

 

B


-e 
2 Rv

T
π

=
 

L R p= ×
 



 

 

R


22q RIA R
T
πµ π= =





 



Dr. Fritz Wilhelm;                                                                                          page 25 of 30 
C:\physics\230 lecture\ch30 Biot-Savart Ampere.docx;  
saved: 4/25/2010 3:15:00 PM; last printed: 4/25/2010 3:15:00 PM 
 

 

the ferro magnetic enhances the original magnetic field. The magnetic state of a substance is 
described by a quantity M



the magnetization vector. The magnetization vector is the magnetic 
moment per unit volume of the substance.  
 
When a substance is placed into an external magnetic field 0B



of a current carrying conductor, 

the total magnetic field B


is a combination of the external field 0B


and an additional magnetic 

field mB


due to magnetic moments of atoms and electrons within the substance.  
(30.39) 

 

0
Magnetic field magnetic field 
of the vacuum of the magnetic substance

mB B B= +
  

 

We express Bm through the magnetization vector M. Let us see how we are being let to the 
notion of M as the magnetization vector. Let us for that purpose express the magnetic field of a 
solenoid with N loops and length h, in terms of the magnetic moment NIAµ =



  and the volume 
containting the magnetic field. This volume would be the volume of the magnetic substance. 
(30.40)  

   
0 0

0 0 0

;m

m

NB nI I NIA NI
h A

B M
hA V

µµ µ µ

µ µµ µ µ

= = = ⇒ =

= = =
 

where M


is the magnetization vector. The magnetization vector is the magnetic moment per unit 
volume of the substance. The total magnetic field B at a point within a substance depends on 
both the applied field B0 and the magnetization of the substance. 
Let us see how we can arrive  at the concept of magnetic moment per unit volume: 
We start with the magnetic field of a long solenoid: 

(30.41) 
A is the surface of the magnetic moment; N =turns of wire of the solenoid. 
V is the volume inside the solenoid.

magnetic moment of the magnetized materialM=magnetization=
volume of the magnetized material

 

 
 

(30.41) 0 0B B Mµ= +
  

 
 
B0 is the magnetic field of the vacuum, due to macroscopic currents as discussed. When this field 
permeates a magnetic substance, or a substance that can be magnetized, it is convenient to 
express this field also in terms of the magnetic moment per unit volume involved. So, we 
introduce yet another quantity H, which is the magnetic moment due to currents. It is called 
magnetic field strength. The magnetic field B (not B0) on the other hand is called the magnetic 
flux density or the magnetic induction. This magnetic induction can then be written as: 
 
(30.42) ( )0 0mB H M B Mµ µ= + = +
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The quantities magnetic field strength and magnetization,  and H M

 

,have the same units of 
Ampere/m: 

(30.43) [ ] [ ] [ ]
[ ] [ ]

2

3

magnetic moment IA Amp m AmpH M
volume V m m

  ⋅ = = = = =



 

 
For a solenoid in the vacuum with the current turnt on we have no magnetization and get: 

(30.44) 0 (B H Mµ= + 0 0 0) B H nI
H nI

µ µ= = =
=

 

 
When we place demagnetized iron into the cavity of a solenoid (without current) the original 
magnetic field as well as H are 0. If we turn the current on, both B and H increase change. H 
increases with the current, but M, the magnetization of the substance also increases. The 
resulting magnetic field B must now be considered: 
(30.45) ( )0B H Mµ= +

  

 
Materials can be classified as to their behavior in an exterior magnetic field. Some become 
permanent magnets. They maintain a net magnetic field expressed by the magnetization vector 
M. They are the paramagnetic and ferro-magnetic materials. Material in which the induced 
magnetic moments become random after the material is removed from the exterior magnetic 
field is called diamagnetic.  
The magnetization M of paramagnetic and ferromagnetic substances is proportional to the 
magnetic field H brought about by exterior currents. Such substances are susceptible to be 
magnetized, hence the name for the proportionality factor ( )chi kyeχ =     

(30.46) 0
0 0

0

; BM H B H Hχ µ
µ

= = ⇔ =


    

 

where ( )chi kyeχ = is the magnetic susceptibility. 
In both paramagnetic and ferromagnet substances the  positive. In ferromagnetic substances, 
interactions between the atoms cause magnetic moments to align and create a strong 
magnetization that remains after the external field is removed. In diamagnetic substances 
susceptibility is negative. 
  
We summarize: 

(30.47) ( ) ( ) ( )0 0 0 1 mB H M H H H Hµ µ χ µ χ µ= + = + = + =
      

 

(30.48) 
( )0 0

; magnetic permeability
1 ;  permeability of the vacuum

m m

m

B Hµ µ
µ µ χ µ
= =

= +

 

 

For paramagnetic and ferromagnetic substances the magnetic permeability is larger than  the 
permeability of the vaccuum, for diamagnetic material it is smaller. For ferromagnetic material 
which is used to strengthen the magnetic field inside of coils the magnetic permeabiltiy can be 
5000 times the permeability of the vacuum. 
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When ferromagnetic substances are placed into a magnetic field and the current is being 
increased, the resulting magnetic field B, plotted versus the magnetic field H due to the currents 
of the coil, shows the behavior below which is called a hysteresis curve. 
 

 
 
 The domains with their magnetic moments inside the iron get lined up to increase the total 
magnetic field. When the current is turned off, the magnetized domains remain aligned and form 
a permanent magnet.   
 
 
  

a 
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Appendix (Optional): 
Derivation of Stokes’ law, just for fun. 

 
We start by drawing a cube to which 
we apply Gauss’s law. Then we use 
this law and apply it to the two 
dimensional projection onto the x-y 
plane: 
 
(30.49)

volume surface

divEdV EdA=∫∫∫ ∫∫
 



 

We project this law onto the x-y 
plane, the volume element becomes a 
surface element dxdy, the surface 
element vector 

 perpendicular to the surface of 
volume V becomes ndl which is a 
line element perpendicular to boundary 
of the projected surface.

dA




 
 
 

(30.50)
,  is the normal line element to a curve in the x-y plane

x y

ndl dn dy dx

E ndl E dy E dx

≡ = −

⋅ = −

 





 

(30.51) 
Compare this to the tangential line element:

,ds dx dy=


 

The scalar product between the tangential and the normal line elements must be 0.  
(30.51) , , 0dx dy dy dx− =  
(30.51) ds dn i× = −



   
 
We choose the orientation of dn such that it points to the outside of the closed curve traversed by 
the vector ds such that the area lies to the left of the direction of ds The flux of the one 
dimensional electric field ( , )xE E x y i=




through the infinitesimal surface becomes  
 

in the xy plane 

( ) ( ) ( )
( )

( ) i i i i ( )

( )

x x x x

x x x

E dn E x dy E x dx dy E x dx E x dy

E x dx E x Edydx dydx
dx x

⋅ = ⋅ − + + ⋅ = + − =  

+ −  ∂  =
∂

   




 

dx j− ⋅


y  

xE E i=




z  

dy i⋅


 

dy i− ⋅


 

dx j+ ⋅
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We recognize this again as the first term of the divergence of ,x yE E E=


multiplied with the 
two dimensional volume element dxdy  

(30.52)
rectangle rectangle boundary of

the rectangle

yx
x y

EEdivE dxdy dxdy E dy E dx
x y

∂ ∂
⋅ = + ⋅ = − ∂ ∂ 

∫∫ ∫∫ ∫




 

 
The projection of Stokes law onto the x-y plane yields : 
 

(30.53) 

the flux of curlB the circulation of B
through any surface A around the boundary 

of the surface A

the flux of cu

 becomes, when projected onto the xy plane:

y x

curlB dA B ds

B B k dxdyk
x y

= ⋅

∂ ∂
− = ∂ ∂ 

∫∫ ∫
 





 



 

( )
rlB the flux of curlB ( , )

through the projection of through the projection of
surface A on xy plane surface A on xy plane

the circulation of B
around the bounda

y x
z

A x y

B BcurlB dxdy dxdy
x y

B

∂ ∂
= − ∂ ∂ 

∫∫ ∫∫ ∫∫


 



 

the circulation of B
ry around the boundary 

of the projected of the projected 
surface A(x,y) surface A(x,y)

x yds B dx B dy⋅ = +∫ ∫


 

 

 
To summarize the essential formulas in this last calculation: 

(30.54) 
( , ) the circulation of B

around the boundary 
of the projected 
surface A(x,y)

y x
x y

A x y

B B dxdy B dx B dy
x y

∂ ∂
− = + ∂ ∂ 

∫∫ ∫



 

If we compare the two formulas (30.52) and (30.54) we see that they are identical under the 
substitution of : 
(30.55)  and 

yx y xE B E B→ →−  
 
Thus, Gauss’ law for the plane can be considered as the third component (z-component) of 
Stokes’ law.  
Summary of Gauss and Stokes’s laws: 
Gauss law in space: 

(30.56) 
V V

divEdV E dA
∂

=∫∫∫ ∫∫
 





 

 
Gauss law in the x-y plane: 
(30.57) ;x y

A A A

divE dx dy E dy E dx E ndl ndl idy jdx
∂ ∂

⋅ ⋅ = − = = −∫∫ ∫ ∫
 

 

 





 

Stokes Theorem for magnetic fields: 
 

(30.58) 
A A

curlB dA B ds
∂

=∫∫ ∫
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Examples: 
In (30.57), if constantdivE =



, the integral is proportional to the area A. For example  

(30.59) , ; 1 1 2x yE x y divE
x y
∂ ∂

= = + = + =
∂ ∂

 

 

(30.60) 

area of the surface A

2
A A A

divE dx dy dxdy xdy ydx
∂

⋅ ⋅ = = −∫∫ ∫∫ ∫






 

Thus we have found a new way to calculate the area of a plane surface A, by calculating the line 
integral around it: 

(30.61) 
1
2A A

dxdy xdy ydx
∂

= −∫∫ ∫  
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