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29.1 Magnetic Fields and Forces
We all know how bar magnets attract some metallic objects like iron files. Many experiments 
have revealed that magnetic field lines always start in one pole and end up in another. There are 
no magnetic monopoles out of which magnetic fields arise. This is in exact contrast to electric 
fields for which there are positive or negative charges. (The magnetic fields generated by 
magnets have their origin in circular currents inside of the so-called para-magnetic material.) 

. 

Let us approach the concept of magnetic fields by contrasting them to electric fields: 
 
The mathematical description for electric fields emerging from single charges was: 

(29.1) 
0

divE ρ
ε

=


 

  
Applying a volume integral and using Gauss’ theorem this leads to the Gaussian law: 

(29.2) 
0 0

of the volume

1 charge inside the volume
volume surface

QdivEdV EdA
ε ε

= = =∫∫∫ ∫∫
 



 

For a magnetic field B we have always : 

(29.3) 0divB =


 
This is the same as saying that magnetic fields do not have sources or sinks or monopoles. 
Magnetic field lines appear between the poles of a permanent magnet. One is called the 
Southpole, the other the Northpole. By convention, we say that the magnetic fieldlines are 
directed from the Northpole to the Southpole. No matter how many times we cut a bar magnet in 
half, we always end up with two poles, which attract other magnets. The Southpole of one 
magnet is attracted by the Northpole of another magnet, and vice versa. We have found in the 
last century that all permanent magnets are due to many circular little currents inside of the 
magnetic material. The magnetic field of the earth is due to a huge circular current of molten iron 
inside the earth. This current, and with it the magnetic field of the earth, has changed during the 
geological history of the Earth. The magnetic poles do not coincide perfectly with the geographic 
poles. And actually, the magnetic Southpole corresponds roughly to the geographic Northpole. 
The N-point of the compass needle points to the magnetic Southpole of the Earth, which is the 
geographic Northpole. 
It is easy to observe that any  moving charge q is deflected when entering a magnetic field 
according to: 

(29.4) vBF q B= ×
 



 
 
 
From this we can deduce the unit for the 
magnetic field, which is  
(29.5)

[ ] 4s 1 1 10NewtonsB tesla T Gauss
Coulombs m

⋅
= = = =

⋅
 

 
 
 

B


 

vq  

vBF q B= ×
 

  

The 
magnetic 
field lines 
point into 
the page. 
The force 
points 
upwards. 
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The force  is of course present in addition to the force created by an electric field. The total force 
on a charge q is therefore: 

(29.6) ( )v  Lorentz ForceF q E B= + ×
  



 

 
The work done by the force of a uniform magnetic field (not time dependent) on a moving 
charge is always 0 as we can easily see (A time-dependent magnetic field creates an electric 
field, see later): 

(29.7) ( ) 0

v is parallel to ds

dW F ds q v B ds= ⋅ = × ⋅ =
 

  



 

The force is perpendicular to both the velocity and the magnetic field vector. ds v ds F⇒ ⊥


  

 , 
similar to the gravitational force on a planet in orbit, which also does not do any work because 
the force is perpendicular to the velocity. From the Work-Energy theorem we know that  

(29.8) 2
2 1

1
2

W K K K mv = ∆ = − = ∆ 
 

 

As work is 0, there can be no change in the kinetic energy of a charge in a magnetic field. The 
direction of the velocity of a charged particle in a magnetic field can change, but not its 
magnitude, or its kinetic energy. 
 
29.2 Motion of a Charged Particle in a Uniform Magnetic Field. 
29.2a Movement perpendicular to the magnetic field; Cyclotron frequency: 

 
Assume that we have a positively 
charged particle, like a proton, injected 
into a uniform magnetic field such that 
the initial velocity of the particle is 
perpendicular to the field. Assume 
that the B



 field points into the plane: 
The charged particle will experience a 
force perpendicular to both the 
velocity and the magnetic field. It 
experiences a centripetal acceleration 
which causes it to move in a circle:

vF q B ma= × =
 

   
(29.9)

2
2mv qBr vvB= ; v= ;

r m
mq m r r
qB

ω= =  

 

(29.10) cyclotron frequencyqB
m

ω = =  

 
 
 

B


 

v  

F


 
B


 

F


 v  
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29.3 Applications. 
29.3a Velocity Selector : 
We can use the set-up of perpendiculary crossed electric and magnetic fields  to select exact 
velocities out of a particle beam. In the picture below the magnetic field points into the plane. 
We place a parallel plate capacitor inside a uniform magnetic field. The particle beam with 
varying velocities points from the left and enters the capacitor. The electric field points from top 
to bottom. Only those particles will pass through the crossed field area for which the upward 
magnetic force equals the downward electric force, resulting in particles with the speed equal to 

Ev
B

=  

 

 
We have to cross them in such a way that the resultant Lorenz force on the particle is 0. 

(29.11) 
x x

z
x x

y

v

: v , v v

:
Ev v =
B

y y

z z

z y

qE q B

Choose B q B q B k

Choose E E k qE qE k

qE q B

− = ×

⇒ × =

= − ⇒ = −

= ⇒

 








 
   

Only particles with this exact velocity will continue in a straight line, all others will be deflected 
up or down and hit the capacitor plates. If we inject these particles with an exactly known 
velocity into a perpendicular magnetic field, the particles will be deflected into a circular motion 
according to (29.9). By measuring the radius of their circular motion the ratio between mass and 
charge can be exactly determined. (Thomson’s e/m experiment). 
We see here also that the ratio between the electric and the magnectic field strength has the 
dimension of a velocity : m/s (We shall see later that in an electromagnetic field this  ratio is 
equal to the speed of light c.) 
 
 
  

 
+++++++++++++++++++++++++

 

 ----------------------------------------------
----- 

BF qv B↑ = ×
 

  

EF qE↓ =
 

 

xv →  
Bz x yF v B↑=  

xqv →
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29.4 Force on a current carrying conducting wire in a magnetic field: 
If we insert a conducting wire into a magnetic field B, this field will obviously excert a force on 
each one of the conducting electrons or charges moving with the drift velocity vd through this 
wire. The total number of charges in a cylindrical segment of wire with length L and 
crosssection A is simple to calculate: 

 
 
It is equal to the charge density times the volume of the 

cylinder q
NA L q A L
V

ρ ⋅ = ⋅ ⋅ . We get an infinitesimal 

force dF acting on a small portion of the wire by using 
just a small distance for the length, i.e. Δx. When a 
current I is flowing with the speed v=dx/dt the 
infinitesimal amount of charges affected in a  small 
segment of wire is given by q qA dx Avdtρ ρ⋅ ⋅ = . Now 
we recognize that this expression is equal to the total 

current I times dt: 
(29.12) 


jq

j

vAdt A dt I dt dQρ = ⋅ ⋅ = ⋅ =


 

 

In the formula for the force on a single charge q we have to transform this expression for a single 
charge into the expression for a small amount of charges dQ passing through a segment of wire 
with cross section A and length dx. 

(29.13) 
v v

dQ I dt

dF dQ B I dt B

= ⋅

= ⋅ × = ⋅ ⋅ ×
  

 

  
We can write the velocity vector as a product of its magnitude and a unit vector. We then cancel 
the velocity magnitude in the numerator with the denominator.  

(29.14) v v
v v
ds dsdF I B I u B= ⋅ ⋅ × = ⋅ ⋅ ⋅ ×

  

   

ds u ds⋅ =
  is a small segment of the current carrying wire in the direction of the wire, which is 

the direction of the current density: That leaves us with the product  
 

(29.15) BdF Ids u B Ids B= ⋅ × = ×
  

 

 
 
Caution with the definitions here:  

(29.16)

19

 number of charges
q=individual elementary charge= 1.60 10
Q=Nq=total charge; n number density of charges
dQ=Idt = small amount of charges flowing through a segment of wire

n current density=j;

V

V

N
C

qv

−

=

± ⋅
=

=


 dQ in our model: Volume V=A ;  I=j A= j
A

x dA
dt

⋅∆ ⋅ = ⋅∫∫
 

 

E


 

v vVj n qρ= =


 

 
A 

     Δx 
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For a small portion of the wire we get the infinitesimal force :  

(29.16) ( )BdF I ds B= ×
 



 

 
dF Ids B= ×
 

 becomes for a straight 
wire of length L: 
(29.17) ( )F I L B= ×

  

 
 
In general, we must integrate over the 
whole length of the current carrying 
wire to get the total force exerted on 
this wire: 
 
(29.18) ( )B

line line

dF I ds B= ×∫ ∫
 



 

Note the direction of the force : It is 
perpendicular to both the line-segment and 
to the magnetic field lines. Whenever the 
current and the magnetic field are in the 
same plane, the force is perpendicular to 
that plane. (Review the “right hand rule” 
which is valid for all cross products, of 
course.) 
Here, to the left, the current is directed 
upward, the magnetic field is directed into 
the page, the force is directed to the left. A 
flexible wire will be bent to the left. 

 
 

 
If the field is uniform (constant), the 
integration is just over the line and is 
nothing but the vector sum over 
infinitesimal segments making up the 
line. The vector sume connects the tail of 
the first vector segment with the head of 
the last vector segment. This vector sum is 
therefore equal to the straight line vector 
connecting the initial point of the wire to 
its endpoint.  
 
This sum is 0 if the line forms a closed 
loop. (Like the total velocity or 
displacement  vector for a closed path.) To 

summarize: 

ds  

B 

'L


 

B


 

Ids

 

dF


 

B


 

vq Ids→
 

 

dF
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The magnetic force on a curved current carrying wire in a uniform magnetic field is equal to that 
on a straight wire, connecting the endpoints of this wire. 

(29.19)
'

'

b

B
line a

b

a

F I ds B I ds B IL B

ds L

 
= × = × = × 
 

=

∫ ∫

∫

    

 



 

 

(29.20) 'BF IL B= ×
  

 
 
 

'  is the distance vector connecting the initial point of the wire with its final point of the
portion inserted into the uniform magnetic field
L


 

The net magnetic force acting on any closed current loop in a uniform magnetic field is 0. 
 
 
29.5 Torque on a current loop in a magnetic field. 
 
Even though the total force on a current loop in a magnetic field is zero, the torque is not. 
Consider a rectangular loop of current inserted in a uniform magnetic field. The magnetic field 

points to the right in the adjacent 
picture, and the rectangular loop of 
current lies in the same plane as the 
magnetic field. The currents in 
opposite sides of the rectangle move in 
opposite directions. Therefore the 
forces on the horizontal parts of the 
loop are 0 because the currents are 
parallel (or anti-parallel) to the 
magnetic field. All forces are 
perpendicular to the plane. Now, if the 
force on the left vertical line points 
outside of the plane, the force on the 
right vertical line points into the plane, 

thus creating a torque around the vertical axis. Both torques create a counter clockwise rotation 
and add up to a resultant torque which points upward along the axis of rotation.  
This is a typical case of a torque created by a so-called vector couple: Two equal and opposite 
forces are applied at the two end-points of a  bar with length 2r which is capable to rotate around 
its center point.  

(29.21) 2r Fτ = ×


 

 
The vector r points from the center of rotation to the endpoint at which the force F



is applied. 
 
If all relevant quantities are at right angles to each other we get the magnitude for the torque as: 
 

r  
inF


 outF


 

L 

h 

up-
current  τ  

A


 

B


 points 
to the right 
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(29.22)

  

2
L IhB A area
r F Lh I B AIB area current magnetic fieldτ

=

= = ⋅ ⋅ = = ⋅ ⋅  

 
  
We define the area of the loop with the current I as a surface-vector A



perpendicular to the 
surface area and with the magnitude of the area. We define the mathematics by always 
circulating around an area along its boundary with the fingers curling in the direction of the 
positive current, and the thumb pointing in the direction of the surface vector. 

 
We define the magnetic dipole moment µ as the 
vector of magitude I (current) times A and in the 
direction of the surface vector A



. 
 

(29.23) magnetic dipole momentIAµ = =




 
 
The direction of the magnetic moment can be 
obtained in the easiest way by curling the fingers 
of the right hand along the loop with the direction 
of the current. (We assume a current of positive 
charges; for negative charges the direction is 

reversed.) Your thumb will then point in the direction of the magnetic moment. In this way, 
the area will be enclosed by the fingers of your right hand.  

 
When the magnetic dipole moment is placed into a magnetic field, a torque is being created 
which re-orients the dipole. The magnetic field will line up the magnetic moment with itself, thus 
obtaining a position with minimum potential energy for the dipole-magnetic field system. Using 
the notation of the dipole moment the torque can be conveniently written as: 
 

(29.24) B B IA Bτ µ= × = ×
 

 

 
The torque of the magnetic moment of a positive charge current is parallel to the axis of rotation. 

 is a unit vector  to the surface.

IA IAk

k

µ = =

⊥







 

IA IAkµ = = −


  x 
x 

y 

y 

z z 

j


 

j
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τ  
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The torque is 0 when the surface is perpendicular to the magnetic field, i.e. when the surface 
vector and therefore the magnetic dipole are parallel to B



. 
 
This is in analogy to what happens when we put an electric dipole into an electric field: 
 

(29.25)  ;
where  is a unit vector pointing from -q to +q.

E p E p qdu
u

τ = × =


   



 

  
If a coil consists of N turns of wire, the magnetic moment of the loop is N times the magnetic 
moment of a single loop: 
(29.25) NIAµ =



  
 
Just like the potential energy of an electric dipole immersed in an electric field was given by  

eU p E= − ⋅


 we define the potential energy of the magnetic loop as the work necessary for an 
outside agent to rotate the loop in the magnetic field: 

(29.26) ( )
2 2 2

1 1 1

2 1sin cos cosdW d B d B
θ θ θ

θ θ θ

τ θ µ θ θ µ θ θ= = = − −∫ ∫ ∫  

We choose our reference angle for the potential energy at 90°, when the surface vector of the 
dipole is perpendicular to the magnetic field, i.e. when the loop lies in the plane of the magnetic 
field.  
Thus, the  potential energy of a magnetic dipole immersed in a magnetic field is given by: 
 

(29.27) BU Bµ= − ⋅




 
  
When the dipole is parallel to the magnetic field the potential energy is smallest(-μB), when the 
dipole is anti parallel it is highest (+μB). (This is the same as with the energy of the electric 
dipole.) 
 
29.6 The Hall Effect : 
If a current carrying conductor is placed into a magnetic field, charges are deflected to one side 
of the conductor, thus creating an electric field across the conductor, because of an excess 
accumulation of one kind of charges on one side of the conductor. The ensuing electric force on 
the deflected (by B) charges opposes the magnetic force.  The accumulation stops when the 
electric force due to the accumulated charge surplus equals the magnetic force responsible for the 
deflection. 
(29.28) dvq B qE=  
By measuring the voltage difference across the conducting slap VH and the current I we can 
determine the charge density in the conducting material. Let us assume it has the shape of a 
rectangular slap with cross-section dimensions of  base d = 1.00 mm and height h=2.00cm, we 
get: 
(29.29) H dV Eh v Bh∆ = =  
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Thus we can measure the drift velocity vd. By measuring the Hall potential and the current I we 
have a way to determine the moving charge density nq. We need to express the drift velocity by 
the current: 
The drift velocity is related to the current density and the current itself. 
(29.30) 

dvV
A

I j A n q hd= ⋅ =




 

(29.31) dv ; vH d
V V

I IV Eh Bh
n qhd n q h

= ∆ = = = B h
d V

IB
n qd

=  

 

(29.32) 
H H

V

V

IB IBV R
n qd d

IBn
qd

∆ = =

=
 

 
By measuring the Hall voltage, the current, the magnetic field we can determine the density of 
the conducting charges and their sign. RH=1/nq is called the Hall coefficient, which is the 
inverse of the charge density ρq. 
 
Example: A copper strip 2 cm (h) wide and d=1mm thick is inserted into a magnetic field B perpendicular to the 
strip width. B=200T and I=200A. Calculate the Hall voltage. 
We find: j=I/A =I/dh = 1000 A/cm2. n=ρm·NA/Mmol=8.95·6E23/64=8.4E22/cm3. This number coincides well with the 
concept of 1 free electron per atom in copper as the conducting electron. 
EH=0.149V/m; VH= 2.98mV. 
 
Such measurements allow one to measure the actual charge density in any conducting or semi-
conducting material, and the sign of the charge carriers. It was a big surprise when physicists 
found that in some some semi-conductors the moving charges were not electrons, but positively 
charged holes. 
  

BF qv B= × ↑
 

  

EF qE= ↓
 

 dv

 

h 

B


 

d 
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Addendum:  

A) Derivation of the law of Biot-Savart. 
 
Abstract: The same mathematical differential equations have the same solutions. Underlying 
differential equations for the gravity potential, the electric potential, and the components of the  
magnetic vector potential share the same differential equations. Therefore their solutions are the 
same also. The differential equations in question here are the Poisson equations, or Laplace 
equations.    

(29.33) 

0 0

0
2 2 2 2

2 2 2
0

; 0 ; ( ) ;

( )  Poisson equation for the electric potential V.

Poisson equation: , , ( , , )

(

divE E E grad V div gradV

div gradV V V

V V x y z
x y z x y z

curl gradV

ρ ρ
ε ε

ρ
ε

ρ
ε

= ∇× = ⇒ = − ⋅ − =

≡ ∇⋅∇ = ∆ = −

 ∂ ∂ ∂ ∂ ∂ ∂
= + + = − ∂ ∂ ∂ ∂ ∂ ∂ 


   

 

) 0V≡ ∇×∇ =
 

 

(29.34)
 

( )
0

0

0; there is no scalar field from which derives. But 

(with the choice divA=0) this leads to the similar equation for the components 

of the vector potent

divB curlB j B B curlA A

A j

µ

µ

= = ⇒ = = ∇×

∇× ∇× = −

     


  


0

ial A as for the scalar potential V. 

; vA A j j qµ∇⋅∇ = ∆ = − =



  
 



We get the same results for the potential functions caused by a single charge q 

(29.35) 
1 1

1 1
0 1 0

1 1( )  if q  located at 0 ( )
4 4

q qV r is r V r
r r rπε πε

= ⇒ = =
−



   

 
In relativistic physics it turns out that V and A



form a single four-dimensional vector. The 
electric field and the magnetic field are also components of a four dimensional quantity, called a 
tensor. This drives home the fact, that the physical facts related to electromagnetism are 
relativistic and four dimensional in their very nature. 
 

(29.36) ( ) 0 1 1
1 1 1

1

v) ;  radius vector from the charge q  at  to point of the field.
4

qA r r r r r
r r

µ
π

= − =
−





   

   

 
 
Experiments show that magnetic field lines have no sources, the field lines close on themselves. 
There are no magnetic charges from which field lines emerge. Thus, magnetic field cannot be 
described through a local relationship like the electric fields of electrostatics, where electric 
fields start in a positve charge and end in a negative charge.  
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(29.36) 
0

; 0divE curlE E grad Vρ
ε

= = ⇒ = − ⋅


  

 

This means that the electric field at a location x,y,z is due to the local change of a scalar field V. 
Local change of a field means that it is the result of the local vector operator ∇



. 
Magnetic fields never start in charges, therefore :  
(29.36) 0 alwaysdivB =



 
Magnetic fields curl around wires with currents in them or even around single moving charges, 
which therefore create a current density : 
 
 

(29.36) 0  curlB jµ=




 

(29.36) 

2
7 60

02

2

0 0 2

10 ;  1.26 10 permeability
4

Athe dimension of curl B is T/m, that of current density j is 
m

T/mj    the dimension of  is 
A/m

Ns
C

TmB
A

µ µ
π

µ µ

− −= = ⋅ =

×

 ∇× = ⇒ = 





 

 

We ask ourselves, just like in the case of the electrostatic field, if the magnetic field at a point 
can be the result of the local change of another field. 
As the curlB



is different from 0, the vector field B


cannot derive (∇


) from a potential scalar 
field, and the evaluation along a closed loop is not equal to 0. (The concepts of conservative 
fields do not apply!!!!!) What could be the local change of a magnetic field: theoretically, there 
are only three choices: B



can be the grad of a scalar field, which is exluded by the fact that  
 0curlB ≠



 
it cannot be the divergence of a vector field because that is in itself a scalar, and the magnetic 
field is  vector, so it could only be the curl of another vector field, which turns out that that is the 
case : 
(29.36) B curlA A= ≡ ∇×

  

 
A


is called the vector potential. Thus, the magnetic field is the curl of a vector potential. It 
must satisfy the fact that 0divB ≡



, which is the case always because 

(29.36) 
( ) ( )

( )

0 0 always; 

compare to

curl 0 0

divB div curlA A

E curl gradV V

= = = ∇ ∇× =

= = ≡ ∇×∇ =

   

  

 

Proof :  

(29.36) ( ) ( ) ( )

For any three vectors we have:

A A A
x y z

x y z

x y z

A A A
B C B B B C B B C

C C C
⋅ × = ⋅ × = ⋅ ×
       



 

If any of these vectors are parallel, the mixed  product is 0. (Properties of the determinant.) 
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We get from this that  

(29.36) ( )
0

0

 and curlB B j B curlA A

A j

µ

µ

≡ ∇× = = ≡ ∇×

∇× ∇× =

     


 


 

We evaluate the double cross product according to the rules of vector operators : 

(29.36) 
( ) ( )

( ) ( ) ( )0

( )

AdivA

a b c b ac c ab

A j A Aµ

−∆

× × = −

∇× ∇× = = ∇ ∇⋅ − ∇ ⋅∇


  

    

       




 

By setting the expression 0divA =


 we are fixing a constant of integration for the vector 
potential. We recognize the remaining operator as the Laplace operator which we encountered 
earlier in chapter 25. 
The equation for the vector potential A is a Poisson equation just like the one for the electric 
potential: 

(29.36) 
0 0

0

0 0 0

v just like 

x x y y z z

A j V

A j and A j and A j

ρµ µ ρ
ε

µ µ µ

∆ = − = − ∆ = −

∆ = − ∆ = − ∆ = −






 

As the same equations have the same solutions we can immediately write down the solution for 
the vector potential. Reviewing the electric potential, we found the solution for a single charge q

  

(29.36)    
0 0

1( )  from 
4

qV r V
r

ρ
πε ε

= ∆ = −

 
Each component of the vector potential obeys the same Poisson equation  
(29.37) 0 0 0v ; v ; vx x y y z zA A Aµ ρ µ ρ µ ρ∆ = − ∆ = − ∆ = −  
 
Therefore the solutions for the vector potential must be similar to those for the electric potential, 
the only difference lying in the constant factor: 

(29.38) 0 0 0vv v; ;
4 4 4

yx z
x y zA A A

r r r
ρµ ρ µ µ ρ

π π π
= = =  

In the previous equtations we placed the charge density into the origin. If we place the charge 
density into a location with the radius vector 1r

 , the distance vector from the charge to the point 
where we calculate the field is 1 1 with the distance r r r r− −

    . and now:(29.38)

 

( ) 0 1
1

1

1 1

0 0

0 0

v  which is the vector potential at point .
4

created by the single moving charge at the point (1):

charge density single charge
4

current density v single charge

A r q r
r r

dq dV
q

j

µ
π

ρ
ρ
ε πε

µ µ ρ

=
−

=

⇒

= ⇒







 



 0 with v : v
4

qµ
π
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To get the vector field ( )B r



we have to calculate A∇×


.In order calculate a derivative of these 
functions we need to pay attention that we calculate the derivatives at the location of the 
function: (x,y,z) and not at the location of the charge (x1,y1,z1). 
To ease up on our writing we can  put the charge back into the origin  and get functions which 
are easier to manage:  
 

1 1
2 2 2

q( ) =e ek q kV r
r x y z

=
+ +  

and  

 

( ) 0 01 1
1 1 2 2 2

v v
4 4

A r q q
r x y z

µ µ
π π

= =
+ +

 



 
 

 
 
We obtain the magnetic field created by this single moving charge at point 1, by taking the curl 
of A at point r  according to (29.36). 

(29.38)
2 2 2

yx z
2 2 2 2 2 2 2 2 2

v( )  with 

vv v

i j k

B r A
x y zx y z

x y z x y z x y z

∂ ∂ ∂
= ∇× ∇× ≡

∂ ∂ ∂+ +

+ + + + + +



 



  

 

r  

( )V r  

Single charge q1 

1

0 0

1;
4

qdivE V
r

ρ
ε πε

= =


 

current density 1j


 
0

0 ;
4

curlB j A µµ
π

= =




 

r  

( )A r
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(29.38) 

y0 z

0 x z

y0 x

vv ;
4

v v
4 r

v v
4

x

y

z

B q
y r z r

B q
z r x

B q
x r y r

µ
π

µ
π

µ
π

 ∂ ∂
= − ∂ ∂ 

∂ ∂ = − ∂ ∂ 
 ∂ ∂

= − ∂ ∂ 

 

When we carry out the derivatives we use the Cartesian forms : 

(29.38) 
2 2 2

1 1
r x y z
=

+ +
 

The partial derivative of the negative square-root results in the factor -1/2 ; the derivative of the 
squares with respect to y and z results in the factors 2y and 2z: 

(29.39) 
( )

32 2 2
2 2 2 2

21
2

z zv yv
y x y z x y z

 ∂   = −
 ∂ + +  + +

 

Therefore: 

(29.39) 
( ) ( )

z y y z0 0
3 3

2 2 2 2 2 22 2

v 2 v 2 v v1
4 2 4x

y z z y
B q q

x y z x y z

µ µ
π π

− − = − = 
  + + + +  

We recognize that the expression in the numerator is the x-component of the cross-product v r×   
We get as the final result for the magnetic field ( )B r



  created by the charge q having the velocity 
v at location r  

The components in the numerator are the 
components of the cross-product  

v r×   

(29.39) ( ) 0 1
3

v
4

q rB r
r

µ
π

×
=

 





 

 
The vector rwhich appears in the numerator of 
the equation points from the moving charge at 
location (1) (which in our derivation we put at 
the origin 0) to the magnetic field at location r

. If we put q1 at location 1r
 , the vector rmust 

be replaced by 1r r−  and the distance r by 

1r r−   
 

( ) 0 1 1 1
1 2

1

v
4

q uB r
r r

µ
π

×
=

−

 





   

  

r  

1( )B r


  

1r
  

1 1vq   

1r r−   
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This law is also known as the law of Biot-Savart: If we want to calculate the magnetic field at a 
point r ,  created by a small segment of current 1 1I ds  at point (1) we use see (29.13)  
  
 
(29.40) 1 1 1 1v =dQ I ds⋅ ⋅

 

 

We call the magnetic field ( )1B r


 the field created by the moving charge at the point (1) 

(29.41) ( ) ( ) ( ) ( ) ( )2 2 20 01 1 1 1 1 1
1 1 1 1 1 12 2

1 1

v ;
4 4

q u I ds uB r d Br r r x x y y z z
r r r r

µ µ
π π

× ×
= ⇒ = − = − + − + −

− −

   

 

   

   

 

 
The unit vector points from the current element at point (1) to the point r ,  where the magnetic 
field is being calculated. If we put the current element into the origin, then 

1 1 1 1, , 0,0,0r x y z= =
 .  
 
 

B) Magnetic Forces on Moving Charges, in general: 
If we place another charge q2 moving with velocity 2v into the magnetic field ( )1B r



 at point r, 
then this moving charge 2 2vq  will feel the force  

(29.41) 
1 1

0 1 1
2 1 2 2 1 2 2 1 2

1

Force on charge (2) created by the magnetic field  created by moving charge q :

vv v
4

B

uF q B q q
r r

µ
π

 ×
= × = ×  

 − 



 

 

 

 

 

Pulling the scalars out of the equation we get : 

(29.41) ( )0 1 2
21 2 2 1 2 1 12

1

v v v
4

q qF q B u
r r

µ
π

= × = × ×
−

 

   

 

 

 
Conversely, the moving charge at location (2) creates a magnetic field 2B



 at location (1) and 

therefore exerts a force 12F


 on particle q1. 

(29.41) ( )0 1 2
12 1 2 22

1

v v
4

q qF u
r r

µ
π

= × ×
−



  

 

 
The unit vectors point in opposite directions. 
In general, this force is not equal and opposite to the force 21F



.  
 

C) Magnetic forces on moving charges in parallel: 
Let us see what we get when the velocities are parallel to each other: In that case, the unit 
vectors are perpendicular to the velocities. If we expand the double cross products we get: 
The force on charge (1) by charge (2) is given by: 
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 (29.41)
( ) ( ) ( )0 1 2 1

1 2 2 2 2 1 2 2 1 2 2 1 22
1 0

v= v v v v v v v
4

k

q qF u k u u ku
r r

µ
π

 
 × × = ⋅ − ⋅ = −
 −  





        

 





 

The force on charge (2) created by the moving charge at (1) 

(29.41) ( ) ( ) ( )2 1 2 1 1 1 2 2 1 2 1 2 1 1

0

v v v v v v v vF k u k u u k u
 
 = × × = ⋅ − ⋅ = −
  



         



 

  
As the unit vectors are opposite to each other we say that the two charges (of the same sign), 
moving parallel to each other, attract each other with the force : 
 

(29.42) 0 1 2
12 1 22 v v

4
q qF
r

µ
π

=  

This is a fundamental law of physics, as fundamental as Coulomb’s law. Two parallel moving 
charges (of the same sign) exert an attractive force on each other which is proportional to the 
product of the charges and speeds, and inversely proportional to the distance between them. 
 
Equal charges moving parallel attract each other, opposite charges moving parallel to each other 
repel each other.  
In order to find the force exerted between current carrying wires, we need to first find the 
magnetic field created by the current in a wire. Then we apply equation (29.16) which we write 
in our new context as: 
(29.43) 2 2 2 1dF I ds B= ×

 

  

It gives us the force on the current I2 at location (2), created by the magnetic field 1B


which is due 
to a current in the parallel wire (1). 
 
We will find an easy method to calculate the magnetic field surrounding a wire with current I1 in 
a later chapter. It is equal to  

0 1
1

1
2

IB
r

µ
π

=
 

and circles around the wire. The orientation of the magnetic field of current I1 follows the right 
hand rule: The thumb indicates the direction of the current, and the fingers curl around it in the 
direction of the magnetic field. If we place a second wire parallel to the first wire, the magnetic 
field is perpendicular to the direction of the current. This means that the force is perpendicular to 
both the magnetic field and the direction of the current. This force points from one wire to the 
other, and is perpendicular to both parallel wires.
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(29.44) ( )  for parallel wires means that

the force is perpendicular to the wires. 

dF I ds B= ×
 



 

 

(29.44) 0 01 2 2 1 1 2
21 2

22 2
I I F I IdF dl
r L r

µ µ
π π

= ⇒ =  

Where we calculated the force on the line segment of wire (2) per unit length of the wire (2): 
 Two currents of 1A in parallel wires, and being one m apart attract each other with the force of 
2·10-7 N per meter. 
 

D) Calculating the magnetic field through the vector potential: 
Just as a fun exercise, let us calculate the magnetic field around a wire by using our insights into 
the magnetic potential A



 
The situation is the same as with the electric potential around a wire.  
For the electric field surrounding a wire with linear charge λ we found that: 

(29.45) 
0

1( )
2

E r
r

λ
πε

=  

From this we calculate the electric potential at distance r from the wire by: 

(29.46) 
0 0 0

ln ln ; ( ) 0
2 2 2

r r
rV E ds dr r r V

r
λ λ λ
πε πε πε∞

∞ ∞

∆ = − ⋅ = − ⋅ = − = − ∞ =∫ ∫


  

Now, we can again use the fact that the electric potential and the vector potential follow the same 
equations, and therefore, under similar circumstances must have the same solutions : 

(29.47) 0 0

0
0 0

- leads to V(r)= ln
2

v  must lead to A = - v ln ;  v=
2z

V r

dQ dzA j r I
dz dt

ρ λ
ε πε

µµ µ ρ λ λ
π

∆ = −

∆ = − = − =






 

We place the wire in the z-direction, and r is given by  2 2x y+  

1 1    B created by current I


 
1  current I  

21 0 2 1

4

F I I
L r

µ
π

=



 

2  current I
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We have replaced 0
0

1 with =I  and with dQ dz dQ
dz dt dt

ρ λ µ
ε

= = .  

(29.48) 2 20 0ln ln
2 2z
I IA r x yµ µ
π π

= − = − +  

 
According to B A= ∇×

 

we need only to calculate the x and y components of the magnetic field, 
as the component in the z-direction (the direction of the current density) is 0. 

(29.49) ( )2 20 0 0
2 2 2

1 1 2ln
2 2 2 2 2x z

I I Iy yB A x y
y y x y r

µ µ µ
π π π

∂ ∂  = = − + = − = − ∂ ∂ + 
 

  

(29.50) ( )2 20 0 0
2 2 2

1 1 2ln
2 2 2 2 2y z

I I Ix xB A x y
x x x y r

µ µ µ
π π π

∂ ∂  = − = + = = ∂ ∂ + 
 

Which means that B circles around the wire and has the magnitude: 

(29.51) 0 1
2

IB
r

µ
π

=  

 


	29.4 Force on a current carrying conducting wire in a magnetic field:

