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Chapter 25: Potential energy and electric potential (voltage) associated with 
electric charges. 
Homework: See webpage 
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25.1 Electrostatic Field and its Gradient: 
So far we have seen that electric charges create electric fields. Electric fields can also be created 
in other ways, as we shall see later. Let me just mention here already that magnetic fields do not 
have charges, ever. This is expressed by the fact that the divergence of magnetic fields B, is 
always 0. So, they must be created through other means. To summarize what we have learnt so 
far: 
 

  ,
0 0 0

E total
V V

QdivE E EdA dVρ ρ
ε ε ε∂

= ∇ ⋅ = ⇔ Φ = = =∫∫ ∫∫∫
   


 

 
We know that if a vector field is the gradient of a scalar function, the vector field is a 
conservative field. We look at a review of the concepts developed in mechanics, where we 
studied the conservative gravitational field, the gravitational force, potential energy, and work. 
The same relationships apply in the case of the electrostatic field. 
Apart from the constants, the gravitational field of a point mass and the electrostatic field of a 
negative charge are the same. This means that the electrostatic force is conservative and there 
must also be an electrostatic potential energy. Let us briefly review the relationship between 
work, force, and potential energy. 
--------------------------------------------------------------------------------------------------------- 
Optional: (I want to have my fun with this too!.) If the divergence of a vector field is different 
from 0 it is a conservative field, i.e. it derives from a scalar field. This again means that the curl 
of the vector field is 0. It also means that the potential field follows a so-called Laplace (or 
Poisson partial differential equation.) 

(25.1) 
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End of optional. 
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25.1a General Relationship between Force and potential energy: 
(Much of this material is also covered in 230 ch19supp2 Vector operators.docx) 
The generalized relationship between a conservative force F



and its potential energy U is given 
in terms of the differential operator:  

(25.1) ( ), , , ,x y z
U U UF gradU U U U U
x y z

 ∂ ∂ ∂
= − = − ≡ − ∂ ∂ ∂ = −∇ ∂ ∂ ∂ 

 

 

This is true whenever the curl of the vector field is 0. For any force to be a conservative force, its 
curl must be 0. This is the same as to say that its circulation is 0.  
(25.2) 0 0

closed
loop

F grad U F F ds= − ⋅ ⇔ ∇× = ⇔ ⋅ =∫


   





 

To simplify the writing of partial derivatives one often defines that 

(25.3) ; ;x y zx y z
∂ ∂ ∂

∂ ≡ ∂ ≡ ∂ ≡
∂ ∂ ∂

  

Do not confuse this notation with subscripts for vector components, like, for example Ax which is 
the x-component of the vector A



. 
Here in (25.1) we have defined ∇



 as the  differential vector operator in Cartesian coordinates 
(del-operator, an upside down Greek Δ) as: 
(25.4)

, ,  This vector operator must operate on some

mathematical quantity to its right; it can be a scalar function, a vector function, or another differential 
operator. In

i j k
x y z x y z

 ∂ ∂ ∂ ∂ ∂ ∂
∇ = + + =  ∂ ∂ ∂ ∂ ∂ ∂ 




 

 the case of a vector function it can operate through a dot product or a cross-product.
 
 

(25.5)
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2 2 2
2

2 2 2ared  is equal to the 

scalar product between the two vector operators, and is given the name Laplace operator. 
Its mathematical symbol is the regular delta .

x y z
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for example, let F= x , ,
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If the curl of a vector field E


 is 0, then it is the gradient of some scalar function V: 
 

(25.6) ( )
cross product of two parallel 
vectors is always 0.

0

0

E E grad V V

E V V

∇× = ⇒ = − ⋅ ≡ −∇

∇× = ∇× −∇ = −∇×∇ ⋅ =

   

     



 

 
(We adopt the convention to call U the potential energy and V the electric potential.  The force 
F


 is related to the potential energy U, and the field E


 is related to the potential function V.  
 

(25.7)                      
0 0

 and  because  and V=F UF grad U E grad V E
q q

= − ⋅ = − ⋅ =


 
  

 

We know that the relationship for every potential energy function U and the associated 
conservative force  F is    

(25.8) ( ), , , ,x y z
U U UF gradU U U U U
x y z

 ∂ ∂ ∂
= − = − ≡ − ∂ ∂ ∂ = −∇ ∂ ∂ ∂ 

  

 

25.1b Reminder of the potential energy function in gravity: 
The potential energy U of x, y, and z for the gravitational force of a point-mass m inserted in the 
gravitational field created by M is:  

(25.9)
2 2 2

( ) ;  with the reference at ; ( ) 0mMG mMGU r U r
r x y z

− −
= = ∞ →∞ =

+ +
 

 
One  can check that according to (25.8) Fx=-∂xU 
 

(25.10)

( ) ( )
3 32 2 2

2 2 2 2 2 22 2

The x component of the force of gravity F is given by:
1 2
2( )x

mMG x
mMG mMGF U r x

x x x y z x y z x y z

 −  ∂ ∂ − −  = − = − = =
 ∂ ∂ + +  + + + +



 

 
which is indeed the correct x component of Fg 
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Therefore,  

(25.11) 
( )

3 2
2 2 2 2

, ,g r
mMG mMGF x y z u

rx y z

− −
= =

+ +



  

 

 
Let us go back to electrostatics where we get the same relationship for charges in an electric 
field, with the exceptions that we have positive and negative charges. 
The force on charge q1 created by an electric field generated by charge q2 is  

(25.12)
( )

1 2
1 2 132

2 2 2 2

, , ;ru kq qF kq q x y z F q E
r x y z

= = =
+ +



  

  

 
25.1c Potential energy and work: 
The work done by a conservative force in moving a particle from point a to point b, is equal to 
the negative change in its potential energy. (Remember that the work done by an outside 
agent on a particle without accelerating it is equal to +ΔU. Example: if you lift a rock of 
mass m through a vertical distance of h, the you do the positive work mgh, which is equal 
to the change of potential energy of the rock. The gravitational force and the gravitational 
field point from the higher potential energy location to the lower potential energy location.) 
 

(25.13) 
along any path 
from a to b

U W F ds∆ = − = − ∫








 

 
This implies that the gradient operation on a conservative field is the inverse of the line integral 
operation. In the following notation of the gradient as the derivative of U with respect to the line 
element  ds  this is made more evident: 
(25.14)  

(25.15) 
dUdU F ds F grad U
ds

= − ⋅ ⇔ = − − ⋅


 







 

 

(25.16) 
0

 a conservative force, and U is its potential energy.

F F gradU

F is

∇× = ⇒ = −
   

  

 
It also means that the line integral of the force is 0 if the beginning and end points are the same, 
or, to say it with different words, if the line integral is taken over a (simple) closed loop.  
 
25.1d Conservative Fields in Electrostatics: 
In electrostatics, we ignore the electric effects of moving charges, and the force associated with 
a constant (in time) electric field is given by 0F q E=

 

. As defined in the previous chapter the 

electrostatic field ( )E r




at a point in space is the resultant force of all electric charges at that 
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point acting on a positive test charge, divided by the test charge. If follows that the electric field 
is also a conservative field, just like the associated force:  
 

(25.17) 
0

0

0 0

; .x

F q E F E
U VE grad gradV E and so on
q x

= ⇒∇× = ⇒∇× = ⇒
∂

= − ≡ − = −
∂

      

  

 
The analogy holds of course also for the integral form of the relationship above: 

(25.18) 
integral form:  

differential form: 

b

a

V E ds

dV E ds

∆ = − ⋅

= − ⋅

∫








 

 
Electric field lines are directed from a higher potential V to a lower potential V, therefore 
always from V+ to V-. They are perpendicular to lines (or surfaces) of constant potential. More 
on this in a moment. (This is analogous to the direction of the gravitational field which points 
from a higher potential energy to a lower potential energy gradΓ = − ⋅Φ




. It also corresponds to 
the heat current density vector which points from a higher temperature to the lower temperature. 

hj k grad T= − ⋅




 and to the diffusion current nj Dgrad n= − ⋅




.) 
We see that the electric potential V is equal to the electric potential energy U divided by the 
elementary charge q0, which can be positive or negative. The electric potential V at any point in 
an electric field is given by  

(25.19) 0

,  with reference to a point (often ground 0 of the earth)

where the electric potential V is set equal to 0.

UV
q

=
 

 
The change 2 1V V V∆ = − of the electric potential between any two points in an electric field is 
equal to: 

(25.20) 


0

b

b a
dVa

UV V V E ds
q

dV E ds

∆
∆ ≡ = − = − ⋅

= − ⋅

∫








 

 
The dimension for the electric potential difference is equal to Joules/Coulomb which has the 
name volt. (in honor of the Italian physicist Volta). The electric potential difference is therefore 
also often called voltage difference or simply voltage. 

(25.21) 
11

1
JouleVolt

Coulomb
=  

 
In the case of a uniform electric field, like between the plates of a parallel plate capacitor where 

the field  is given by
0

E uσ
ε

=


  , the path independent line integral above becomes simply a scalar 
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product between the uniform vector of the electric field and the distance d between a and b, 
which is the distance between the two plates of the capacitor.) 
 

(25.22) 
 from one 

plate to the other
path

V E ds Ed∆ = − ⋅ =∫




 

 
Memorize: 
Electric field lines always point in the direction of decreasing electric potential V.  

(25.23) E V grad V= −∇⋅ ≡ − ⋅


 

 
 
From this we can also see that the dimension of the electric field can be conveniently expressed 
through Volt/meter: 

(25.24) 
[ ] [ ]

[ ]
[ ]

;

x  dimension of x

V Volt V NE
d meter m C

= = = =

≡

 

 
This is of course consistent with the fact that  
 

(25.25) 



0

=- the value of the electric field is 

the rate of change of the voltage with respect to distance x.

lim

x

x
x

VE gradV E
x

VE
x∆ →

∂
= −

∂

∆
= −

∆




 

 
Now the unit of eV should become clearer also:  
1electron Volt=1eV is the energy necessary to move an elementary charge e across a 
voltage difference of 1 Volt. 
 

(25.26) 
19

6 13

1 1.6 10
1 1Mega-electronvolt=10 1.6 10
eV J
MeV eV J

−

−

= ⋅

= = ⋅
 

 
Let us also recall the work energy theorem for conservative forces: 
 1 1 2 20U K U K U K∆ + ∆ = ⇔ + = +  
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(25.27) 


2 2
0 0 b a

0

1 (v v )
2

For any conservative force an increase in potential energy means a decrease 
in kinetic energy and vice versa. 0

Work done by the conservative force = 

b

a

U

W U q V q E ds K m

K q V

W
∆

= −∆ = − ∆ = ⋅ = ∆ = −

∆ + ∆ =

=

∫




0K U q V∆ = −∆ = − ∆

 

Note here again, that if an outside agent moves a positive charge without acceleration, the 
work done by that agent is +ΔU.  
 
(25.28) 0Work by outside agent (without acceleration): W=+ +qU V∆ = ∆  
 
Recall the situation where a person lifts a rock of mass m by a distance y in the gravitational 
field on earth. The work done by gravity is mgy− , but the work done by the person is mgy+ , 
which is equal to the potential energy of the rock at height y. 
A positive charge placed into an electric field will be moved along the electric field lines in the 
direction from positive to negative. The charge will be accelerated by this force, according to  

(25.29) 
b

a

W q V qE ds K= − ∆ = − ⋅ = ∆∫




 

 
25.2 The Electrostatic Potential V. 
If the force in question is an electrostatic force the sign of the potential energy also depends on 
the sign of the test charge q0 which we put into the field.  If a positive charge, having a certain 
initial velocity, is moving against the electric field, the potential energy (voltage) will 
increase (the kinetic energy of the charge will decrease). If a positive charge is allowed to 
move with the electric field, its kinetic energy increases and therefore its potential energy 
decreases. For a negative test charge the situation is reversed. 
 
Example 1: Assume there are two equipotential field lines, one at 2 Volts, the other at 5 Volts. 
By definition, the potential does not change along these lines. There is an electric field at every 
point of these lines. The direction of these fields is always perpendicular to the equipotential 
field lines. Moving tangentially along an equipotential field line will yield a zero change in 
potential energy, dV=0. But 0dV E ds if E ds= − ⋅ = ⊥

 

 

 
The scalar product between a non-zero electric field E



, and the tangential line element ds  can 
only be 0 if the angle is 90°. Thus, the only possible direction for an electric field is 
perpendicular to both equipotential lines.   
If an outside agent moves a positive charge of 1mC from V=2 Volts to V=5 Volts, the path 
against the direction of  E grad V= − ⋅




requires the amount of work for the outside agent 
W=1mC∙3Volts =3mJ. The outside agent does positive work and increases the potential energy 
of the system. 
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  25.2a Summary: 

 

0 when  is perpendicular to ,  a line element along the eps.    
Lines for which dV=0 are called equipotential field-lines, or, in three dimensions,

         equipotential surfaces (eps

dV E ds E ds• = − ⋅ =
•

 

 

). 

As  this means that  is also perpendicular to the equipotential 

surfaces. dV is a maximum if   is parallel to  which is  to the eps.

Between any

E grad V E grad V

ds E or grad V

• = − ⋅ = − ⋅

− ⋅ ⊥

•

 
 






a b two points of a given eps with V  and V  we have constant - 

As there is only one electric field line possible connecting two points it must start 
at a  direction perpendicular to t

b

a b
a

V E ds V V∆ = = − =

•

∫






he first  equipotential surface in a given point and end at a 
perpendicular direction on the second eps. 

 The magnitude of - is the maximum change of the potential function and points in grad V E• ⋅




the 
     direction of decreasing values for V.
 We say that the electric field follows its gradient, which means that it follows the direction of 

maximum change of its potential field.
We can more rea

•

• dily visualize this by considering energy conservation in the form 0. 
A charge does the minimum work when if follows its gradient. As a result its gain in kinetic energy 
is at a maximum. 
Think o

K U∆ + ∆ =

0

f water running down a hill. It gains kinetic energy and loses potential energy.

 KK U V
q
∆

∆ = −∆ ⇒ = −∆

 

 
 
Example 2: If the electric field vector E



 is parallel to the displacement ds we get the maximum 
change of the potential dV. If the perpendicular distance between two level curves of values 8 
and 12 volts at a given point is 0.5 cm, we know that the maximum strength of the electric field 
is  

(25.30) 
4 800
0.5

V Volts VE
s cm m

∆
= = =
∆



 

 The direction of the electric field is from the 12 volt level to the 8 volt level. 
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Example 3: A 12 V battery is connected to two parallel plates 0.30 cm apart. Find the potential difference and the 
electric field inside of this capacitor. 
. 

Well, ΔV=12 Volt. But ΔV=Ed, where d is the separation between the 
two plates. Therefore the electric field inside the capacitor is 4000 V/m. 
The field is directed from + to -. The negative plate is connected to the 
negative pole of the battery (cathode) and the positive plate is connected 
to the positive pole of the battery (anode). The battery pumps electrons 
onto the negative plate. They repel electrons on the opposite plate. These 
repelled electrons flow back into the battery, thus leaving a positively 
charged inside plate.  
 
 
 
 

 
 
Example 4: A proton is released from rest in a uniform electric field with strength of 80,000 V/m. The proton 
moves by a distance of 0.50 m in the direction of E



.  
 

 
 
a) Find the change in electric potential between the initial 
and final points. The proton will move in the direction of 
decreasing potential for a distance of 0.50m 

40,000
f

i

V E ds Ed V∆ = − = − = −∫




  

The electric field exerts a positive force on the proton, 
which will accelerate and gain kinetic energy. As we 
have conservation of energy E=K+U the potential energy 
of the proton must decrease by the same amount as the 
kinetic energy increases.  
 
 
 
b) Find the change in potential energy of the proton-field 
system. 
 

(25.31) 19 15
0 1.6 10 ( 40,000 ) 6.4 10U q V C V J− −∆ = ∆ = + ⋅ ⋅ − = − ⋅  

 
 
 
c) Find the speed of the proton at the end of 0.50 m. 

(25.32) 

15

15 6

0 6.4 10

2v= 6.4 10 =2.8 10
m

U K K U J

mJ
s

−

−

∆ + ∆ = ⇒ ∆ = −∆ = ⋅

⋅ ⋅
 

 

+12V 

  + - 
  + - 
  + - 
  + - 

Figure 1 

80,000V 0V 

E


 

Figure 2 
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(25.33)Remember: 

b

 from a to

(any path)

path

b

a b
a

Work W F ds U q V

V Eds V V

= = ⋅ = −∆ = − ∆ ⇒

∆ = − = −

∫

∫









 

  
The electric field lines are perpendicular to the lines of constant electric potential. The  
electric field points from a higher potential to a lower potential.  
 

     (25.34) E grad V= − ⋅




 
 
 
25.3 Calculation of the Potential Energy U and the Electric Potential V, due to point-
charges: 
The electric field at location r of a point charge q located as (0,0,0) is given by: 

(25.35) 2 2 compare to the gravitational field of mass M: e
r r

k q MGE u u
r r

= Γ = −
 

 

 

From our discussion about conservative fields and forces it follows that the electric potential 
difference can be calculated through the line integral between two points, given that the line 
integral depends only on the initial and final point. (This means that the line integral becomes a 
regular definite integral.) We then set the potential value at the initial or reference point equal to 
0. As in the case of the gravitational potential energy, that point is taken at infinity. 

(25.36) ( )2 2

 

f f f
e e e e e e

f i r
f i f ii i i

k q k q k q k q k q k qV V V V E ds u ds dr
r r r r r r

 
∆ = − = ∆ = − = − = − = − − − = −  

 
∫ ∫ ∫


  

   

(25.37) 2 2 2

i

q( ) =  ; compare to 

with ( ) 0 for r

e e
f g

i

k q k MGV V r
r rx y z

V r

≡ = Φ = −
+ +

= →∞  
 
For a series of point charges qi the potential function V(r) at a point r is the sum of all the 
potentials due to the individual charges qi. 
 

 
 
 
 
 

Q1 

Q2 Q3 
r  1r

  

1r r−   

2r r−   

2r
  3r

  

3r r−   

V(r) 
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(25.38) 

( )
( ) ( ) ( )

( )

( ) ( ) ( )

2 2 2
1 1

1

; 0 for r

For charges located on the x-axis: ; 0 for x

n n
i i

e e
i ii i i i

n
i

e
i i

q qV r k k V r
r r x x y y z z

qV x k V x
x x

= =

=

= = = →∞
− − + − + −

= = →∞
−

∑ ∑

∑

 

 

( ) ( ) ( )2 2 2
i i i ir r x x y y z z− = − + − + −

   is the distance from the point r  where we calculate 

V(r) =V(x,y,z) and the point ir
  which is the location of the individual charges qi. Note that the 

potential function is a scalar function, not a vector. 
We can always obtain the electric field by taking the derivative of the potential field: 
(25.39) ( , , ) ( , , )E x y z gradV x y z= −




 
(25.40)

 

( )
( ) ( ) ( )

( ) ( ) ( )

( )
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1
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1 1 2 2 2 2

3
1 2 2 2 2
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1 2
2

, ,
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i

e
i

i i i
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i

e e i
i i

i i i
i i i

n
i

x e i
i

i i i

qE x y z grad k
x x y y z z

x x
qk k q

x x x y y z z x x y y z z

x x
E x y z k q

x x y y z z

=

= =

=

 
 = −
 − + − + − 

 − −   ∂   = − = − =
 ∂ − + − + −  − + − + −

−
=

− + − + −

∑

∑ ∑

∑




 

The results for the y and z components of the electric field vector are obtained in the same way. 
 
Potential Energy of a System of Charges: 
In order to calculate the potential energy of a system of charges one has to consider how this 
system is brought together. For example: If three charges form an original system, they have an 
electric potential V(r) at the point r . If a fourth charge q4  is brought into this system, we get a 
different potential energy ( )4U q V r= from when all four charges are assembled from infinity 

4

, 1
;i j

e
i j i j

q q
U k i j

r r=

= <
−∑  

 (See (25.43)). Let us start with two charges: 

 
25.3a Electrostatic Potential Energy of point charges. 
The potential energy of a system of 2 point charges at a distance r12  = 1 2r r−   from each other is 
the energy needed for an outside agent to bring charge q2 from infinity to a distance r12 from the 
potential of charge q1, without acceleration (Compare to bringing a mass m into the gravitational 
field of the sun with mass M, or lifting a mass m by a distance h, gives the mass a potential 
energy of mgh.). Note that this potential energy is not a function of a location. It is a potential 
difference with the 0 reference point at infinity. 
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(25.41) 1 1
2 1 2 2

12 1 2

kq kqU q V q q
r r r

= = =
−
 

 
 
Note that if the charges are of the same sign, U is positive. If the charges are of opposite signs U 
is negative (attraction). If they are of the same sign (repulsion), an outside agent must do positive 
work to overcome the repelling force between the charges. 
 
The potential energy of the system of three charges is: 
 
(25.42)
 

1 3 2 3 1 3 2 31 2 1 2

12 13 23 1 2 1 3 2 3

;  the charges can be positive or negative.e e
q q q q q q q qq q q qU k k

r r r r r r r r r
  

= + + = + +    − − −   
     

 
 
For a system of more than three charges we must add the contributions of all the pairs, without 
duplication. This means that we use only one of any two possible combinations because rij=rji: 
 

(25.43) ,
;i j

e
i j i j

q q
U U k i j

r r
∆ = = <

−∑  

 
 
For 5 different charges we get the following valid combinations: 12,13,14,15,23,24,25,34,35,45.  
 
Example 5: A charge q1=2μC is located at the origin, and a charge q2=-6μC is located at (0,3)m. Find the total 
electric potential due to these charges at the point (4,0)m. 

 

1 2q Cµ=  

2 6q Cµ= −  

(4,0) 

(0,3) 

Find V here 
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From (25.38) we get: 
( )

( ) ( )

2

1 1

2 2

2 6(4,0) 6.29
4 5

n
i i

e e e
i ii i

i i i

q q C CV r k V k k kV
r r r r

r r x x y y

µ µ
= =

− = = = = + = − − −  

− = − + −

∑ ∑   

 

 

Now, find the change in potential energy of this system of two charges plus a charge q3=3μC as the latter charge 
moves from infinity to the point r. 
(25.44) ( ) 2

3 12 3 6.29 1.89 10U q V C kV Jµ −∆ = = ⋅ − = − ⋅  
Now, what would be the change in potential energy (what would be the energy of the system of the three charges) 
when all three charges start out infinitely far apart? 
In this case we have to calculate all contributions of all the charges according to (25.43) 

(25.45) 
( )2

21 3 2 31 2

1 2 1 3 2 3

12 6 18 5.48 10
3 4 5e e

Cq q q qq qU U k k J
r r r r r r m

µ −  − − ∆ = = + + = + + = −    − − −   


     

 

 
 
25.4 Obtaining the value of the electric field from the electric potential V. 
It is usually easier to calculate the electric potential (a scalar) than the electric field (a vector). 
We know the general relationship is: 

(25.46) 
, ,  in cartesian coordinates

 for a spherical symmetric situation

(no angular dependency)

r

E grad V

x y z

u
r

= − ⋅

∂ ∂ ∂
∇ =

∂ ∂ ∂

∂
∇ =

∂










 

 

 
 
As an example, find the electric field due to a dipole, by calculating V(r) first:  
Let us first calculate the electric potential of the dipole at the point x on the positive x axis to the 
right of x=a. We position the positive charge q1 at x1=a and the negative charge  at x1=-a. We 
notice that at point x the electric field E1  due to the positive charge q1 is larger than the electric 
field due to the charge q2. Therefore the resultant electric field will point to the right. It also 
means that the potential V(x) is positive. 
 

+q1 -q2 

a a 

r 
y 

P(x) 

x 

    x-a 

    x+a 

ixE E=
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From: (25.38) 
( ) ( )

( ) ( )

1

1

; 0 reference point

; 0 

n
i

e
i i

n
i

e
i i

qV r k V r
r r

qV x k V y
x x

=

=

= = ∞ =
−

= =
−

∑

∑

 

we get: 

 

(25.47) 

1 2

1 2

2 2 2 2

1 1( )

( ) 2( ) ( )

e e e

e e

q q q qV x k k k q
x x x x x a x a x a x a

x a x a aV x k q k q
x a x a

  −   = + = + = − =      − − − + − +    
+ − −

= =
− −

 

 
We get the electric field by taking the negative gradient, which in this one-dimensional case 
reduces itself to the x-derivative: 

(25.48) 
( ) ( )2 22 2 2 2

42( ) 2 e
x e

k qaxdV xE x k qa
dx x a x a

 
 = − = =
 − − 

 

 
If the point x is located to the left of charge q2  the electric field E2 due to the negative charge is 

larger than the electric field due to the positive charge is farther away from P. This means that 
the resultant field will again point to the right. 
The differences in the denominators must be the positive distances between the charge and 
the location where we calculate the potential function V: In the above example, the negative 
charge is closer to the point where we calculate the potential function than the positive charge. 
Therefore the sum must turn out negative. 
 

(25.49)

1 2

1 2

2 2 2 2

1 1( )

2( )

e e e

e
e

q q q qV x k k k q
x x x x x a x a x a x a

k qax a x ak q
x a x a

  −   = + = + = − =      − − + − + −    
−− − +  = − −   

For the electric field we expect again a positive x component: 

+q1 -q2 

a a 

r 
y 

P(x) 

-x 

E
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(25.50) 
( ) ( )2 22 2 2 2

2 2 2( ) ; 2e e
x

k qa x k pxVE x p aq
x x a x a

∂
= − = = ≡

∂ − −
 

For x=0 we get a 0-potential field, but a negative electric field (by inspection):

( ) 2

20 e
x

k qE x
a

−
= =  

For distances on the x-axis much larger than the distance between the two charges of the dipole, 
we can neglect the distance “a” in the denominator. We also use the conventional notation p=2aq 
for the magnitude of the dipole moment:  
 

(25.51) 
Dipole moment p directed from the negative to the positive charge:
                                                      p=2aq   

We get for the electric field of the dipole, with the negative charge to the left of the positive 
charge, at long distances from the charges, along the direction of the dipole moment: 

 ( ) 3

2 iek pE x
x

=




 

 
25.4a Calculation of the potential function of a dipole in polar coordinates: 
For an arbitrary point in the x-y plane, we get the electrostatic potential V in polar coordinates as 
an approximation: 

(25.52)

1 2

1 2 1 2

2 1
2

1 2

2

1 2 1 2

1 1( , )

2 cos

cos( , ) 2

with  and 2 cos

e e

e e

e

q qV x y k k q
r r r r

r r ak q k q
r r r

kV r aq
r

r r r r r a

θ

θθ

θ

   −
= + = + =   

   
 − +  = ≈   

  

=

≅ ≅ − ≅

 

For very long distances r the three radii are parallel, and the triangle with angle θ  is a right 
triangle. 

The product of the distance between the two 
charges and the charge is often called the dipole 
moment: p=2aq. p d q= ⋅





The vector d


points 
from the negative to the positive charge and has 
as its length the distance between them. 
 

(25.53) 2

cos
eV k p

r
θ

=  

To calculate the electric field by taking the  
gradient of V, we express our variables in terms 

-q 
 
 
 
 
 

x 
 
 
 
 
 

r2 
 
 
 
 
 
 
 
 
 
 
 
 

r1 
 
 
 
 
 
 
 
 
 
 
 
 

θ 
 
 
 
 
 
 

2a 
 
 
 

   P 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

θ 
 
 
 
 
 
 

r 
 
 
 
 
 
 
 
 
 
 
 

q 
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of x, y, and z . For the plane, we use x and y variables only. 
2 2

cos x x
r x y

θ ≈ =
+

 

(25.54)

( )

2 2

2 2

3
2 2 2

; cos

( , ) e

xr x y
x y

xV x y k p
x y

θ= + =
+

=
+

 
We can easily obtain the components of the electric field from (25.54) by using E grad V= − ⋅




. 
The value of the electric field on the x-axis is consistent with the result (25.48). We can obtain 
the electric field anywhere in the x-y plane, as long as the location is far away from the dipole. 

(25.55) ( ) ( ) ( )

( )
( )

( )

2

3 1.5 2.52 2 2 22 2 2

2 22 2 2

2.5 2.52 2 2 2

1 2( , ) 1.5

23

x e e

e
x e

V x xE V x y k p k p
x x x x y x yx y

k p x yx y xE k p
x y x y

   ∂ ∂ ∂    = − = − = − = − − =   ∂ ∂ ∂ + + +   

−+ −
= − =

+ +

 

 

(25.56) 
( ) ( )3 2.52 22 2 2

3 2( , )
2
e

y e
k pV x xyE V x y k p

y y y x yx y

   ∂ ∂ ∂    = − = − = − =   ∂ ∂ ∂ + +   

 

These approximations are very good as long the dipole length is very small in comparison with r. 
If the dipole is created by a molecule the length is around 10 nanometers. Any macroscopic 
distance would justify these approximations. 
 
By the way, our calculations can also be performed using polar coordinates for the gradient 
operator  

(25.57) ( ) 1, r
V Vgrad V r u u
r r θθ

θ
∂ ∂

⋅ = +
∂ ∂



 

 

(25.58) ( ) 2

cos, eV r k p
r
θθ =  

This yields the electric field in polar coordinates: 
(25.59) ( , )E r grad Vθ = − ⋅




 
 

(25.60) 
2 3

2 3

cos cos

sin1 1 cos

r e e

e
e

VE k p k p
r r r r

k pVE k p
r r r rθ

θ θ

θθ
θ θ

∂ ∂  = − = − = + ∂ ∂  
∂ ∂  = − = − = ∂ ∂  

 

  



Dr. Fritz Wilhelm,                                                                                                    Page 18 of 24  
Physics 230 C:\physics\230 lecture\ch25 electric potential.docx 
3/11/2010; 9:37 AM; Last printed 3/11/2010 9:37:00 AM; saved 3/11/2010 9:37:00 AM 

 

 
25.5 Electric Potential Due to Continuous Charge Distributions. 
For a continuous charge distribution the sum in equation (25.38) becomes an integral: 
 

(25.61) 

( )

( ) ( ) ( )
1 1 1

1charged
body (1)

1 1
2 2 2

charged body 1 1 1with variables 
x , ,

(1)( ) ;

( , , )

Note: V(r)=V(P)=V(x,y,z)

e e
e

e

y z

k dq k dq dqdV V P V r k
r r r r

k dVV x y z
x x y y z z

ρ

= ⇒ = ⇒ =
−

=
− + − + −

∫ ∫

∫

 

 

Note that the distances do not involve directions: V is a scalar function. To avoid confusion, 
distinguish between the coordinates at which we calculate the potential function (x,y,z) and the 
domain over which we integrate to obtain the charge (x1,y1,z1) or some other variables over 
which we integrate. These variables must disappear in the final result. 
If the electric field is already known we can use the equation  (25.62) 
 

(25.62) from 
B

A

E grad V V E ds= − ⋅ ⇒ ∆ = −∫


 





 
 
to calculate the potential difference, and then choose a convenient 0 reference point. 
25.5a Potential of  a charged ring. Example 6: 
Find the electric potential at a point P located on the perpendicular axis of a uniformly charged ring of radius a and 
total charge Q. 

We see that the distances are the same 
for every point on the ring, therefore the 
integration does not involve the distance 
r but  only the angle α.

( )
2

1
2 2

0

2 2

2 ( )e e
e

e

k dq k aaV x k d V x
r r x a

k Q
x a

α π

α

π λλ α
=

=

= = = =
+

=
+

∫ ∫

 
We get the electric field by taking the 
derivative with respect to x: 

( )

( )

3
2 2 2

3
2 2 2

1 2
2x e

e

V xE k Q
x x a

xk Q
x a

∂
= − =

∂
+

=
+

 

x 
a 

r 
 

1dq ds adλ λ α= =  

V(x) 
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We can also get the electric field with respect to r by using the polar form of the gradient. Conveniently, the “r” 

component of the gradient is simply: 
r
∂

−
∂

V(r). 

Therefore we get: 2( ) e ek Q k QE r
r r r
∂

= − =
∂

As we can see from the picture, this is the magnitude of the electric 

field at the point x. The x-component can be obtained by multiplying with the cosine of the angle between r and x, 

namely: 
x
r

 

 
 
25.5b Potential of a charged disk; Example 7: 
For a uniformly charged disk with radius R we have to use the previous expression of V as our infinitesimal 
potential function dV and integrate over the variable radius “a” from 0 to R.

a=R

2 2
a=0

22  and V= ek adadq a da
x a

π σ σπ=
+

∫  

We make the substitution for the radicand 

(25.63)

( )

a=R a=R 1
2 2 2

12 2
a=0 a=0 2

2 2

2V= ; 2 2

( ) 2

e e e

e

ada duk x a u ada du k k u
x a u

V x k x R x

σ π σ π σ π

σ π

+ = ⇒ = ⇒ = =
+

= + −

∫ ∫
 

For the electric field component Ex  we get: 

(25.64) ( )2 2

2 2
( ) 2 2 1x e e

xE V x k x x a k
x x x a

σ π σ π
 ∂ ∂

= − = − + = − ∂ ∂ + 
 

25.5c Potential of a charged line. 
Example 8: Find the potential field V(0,y) of a line of charge. The line has length L and starts at x=0. 
 

 

1dq dxλ=  

1

1

1
1 12 2

0 1

2 2 2 2

( , ) (0, ) ,  x sinh , cosh

cosh cosh cosh
coshsinh sinh 1

x L

e
x

dxV x y V y k y dx y d
x y

y d y d d
y y y

λ θ θ θ

θ θ θ θ θ θ
θθ θ

=

=

= = = =
+

= = =
+ +

∫

∫ ∫ ∫  

1x L=  

(0, )V y  
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(25.65) 

2 2 2 2

1 2 1 2

Useful: cosh sinh 1 sinh 1 cosh

cosh ;sinh
2 2

sinh ln( 1);cosh ln( 1)

x x x x

x x x x
e e e ex x

x x x x x x

− −

− −

− = ⇔ + =

+ −
= =

= + + = + −

 

 
 

(25.66) ( ) 1
12 2

1

; we integrate x  from 0 to Lek dxdV y
x y
λ

=
+

 

(25.67)

( ) 1
2 2

0 1

2 2 2
2 21 1 1 1 1 1 1
12 2

2 2 2 2 2 2
1 1

0

 the integral is given by: 

x 1sinh ; sinh ln( 1) ln( ) ln

( ) ln ln ln

L

e

L

e
e e

dxV y k
x y

x x x x x y xAr x y
y y y y y y y y

x x y L L y L L yk QV y k k
y y L y

λ

θ θ

λ λ

=
+

 +
= = = + + = + = + + = 

 

     + + + + + +
     = = =

         

∫

 

If we want to calculate V(x) with x>L we get: 
 
 

(25.68) 

( )
( )

1 1
12

11

; we integrate x  from 0 to L
0

( ) ln

e e

e

k dx k dxdV x
x xx x

x LV x k
x

λ λ

λ

= =
−− +

− = −   

 

We get the electric field Ex(x) by using the gradient: 

( )

( ) ( )

1 1( ) ln

( )

x e e

e e

x LE x V x k k
x x x x L x

x x L Lk k
x x L x x L

λ λ

λ λ

∂ ∂ −   = − = + = − =   ∂ ∂ −   
   − −

=     − −   

 

This field is positive and the vector points to the right as expected.  
If the point is located at a distance d from the charged line, x=d+L and x-L=d. We get  

(25.69) 
( )x e

LE k
d L d

λ
 

=  + 
 

 
If we want to calculate the potential field to a point to the left of the origin on the x-axis (x=-d), we know that we 
must get the same potential field at a point d from the end of the charged line. We must also get the same electric 
field magnitude, but Ex  points to the left. The point x=L+d to the right, corresponds to a point x=-d to the left.  

(25.70)
( ) ln ln

( ) 1 1 ( )( )
( ) ( ) ( )

e e

e e e e

x L x LV x k k
x x

V x x x L L LE x k k k k
x x L x x x L x x L x x L

λ λ

λ λ λ λ

− − +   − = − = −   −   
∂ − − + − − = − = + − = = = − ∂ + + + + 
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If we put our point at x=-d, i.e. at the distance d to the left of the origin, we use x=d in our 
formula for E(-x) we get: 

(25.71) 
( )x e

LE k
d L d

λ
 

= −  + 
 

 
 
25.5d Potential of a uniformly charge sphere: Example 9: 
Electric potential due to a uniformly charged sphere. The charges are uniformly distributed throughout this non-
conducting sphere: 

The potential of a uniformly charged sphere is ek Q
r

 on the outside of the sphere. We calculate the inside potential 

by first calculating the electric field: 
The electric field inside of the uniformly charged sphere was obtained by using Gauss law.  

(25.72) ( )2 3
3

0 0

4 34  for r R and 
3 3 4

QE r r E r r
R

ρ π ρπ ρ
ε ε π

= ⇒ = ≤ =  

As we know the value of V on the sphere to be kQ/R, we can use a point on the surface as our reference point and 
calculate V inside of the sphere at a point D by using: 

(25.73) ( ) ( ) ( ) ( )2 2 2 2

0 0 0

1 1
3 3 2 6

f D

D D D
i R

V E ds rdr r R V r V R R rρ ρ ρ
ε ε ε

∆ = − = − = − − = − = −∫ ∫






 

 
 

(25.74) ( ) ( ) ( )2 2

0

1
6D DV r R r V Rρ

ε
= − +  

(25.75) 
2

3 2

0 0

4 4( )
3 3 4 3

e
e

k Q RV R k R R
R R

π π ρρ ρ
πε ε

= = = =
⋅

 

(25.76) ( ) ( ) ( )
2

2 2 2 2

0 0 0

1 3
6 3 6D D D

RV r R r R rρ ρ ρ
ε ε ε

= − + = −  

 
 25.5e Electric Potential Due To a Charged Conductor. 
 
The surface of any charged conductor in electrostatic equilibrium is an equipotential surface. 
Because the electric field is 0 inside the conductor, the electric potential is constant everywhere 
inside the conductor and equal to its potential on the surface. There cannot be a different 
potential inside, because any difference to a potential would require the existence of an electric 
field. As there is no electric field inside the conductor, the potential field must be the same as the 
field on the surface. 

For example, the potential of a charged conducting sphere is equal to ek Q
R

 on its surface and has 

therefore the same value on the inside. 
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grad f⋅


 
 
 
 
 
 
 
 

u




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

25.6 Optional: Directional derivative and gradient: 
Review of Vector Operators and Related Topics from a Physics Perspective: 
 
Let u be a unit vector and ( )T r a scalar field like the temperature field, i.e. each point in space 

has a temperature assigned to it. We can 
define a function which tells us how the 
temperature field is changing in any 
direction defined by the unit vector: 

(1.1)
( ) ( )

0
lim

t

T r t u T rT
u t∆ →

+ ∆ ⋅ −∂
=

∂ ∆

  



 

The change of a scalar function is given by 
the gradient of that function. For a 
temperature field, we have:  
(1.2)  or j k gradT E grad V= − = − ⋅


 



 
where k is simply the conductivity 
constant. Multiplying this function by the 

unit vector gives us the scalar quantity of change of temperature or the potential in a particular 
direction. 
(1.3)  or j u k gradT u E u grad V u⋅ = − ⋅ ⋅ = − ⋅ ⋅


 



   

 
This is the current density multiplied by the direction. We can easily see now that this flow is a 
maximum when the unit vector is parallel to the direction of the current density. The set of 
points for which T is constant defines the level curves (equipotential curves) or level surfaces 
(equipotential surfaces). 
 
Below, we have three level curves in the xy plane. They are constant circles, for example 

2 2 2 2 2, ,x y a b c+ = with three different constant values. The corresponding function would be  
2 2( , )f x y x y= + These are concentric circles with radii a, b and c. The gradient of this function 

in the point x=2 and y=3 is given by: 
(1.4) ( , ) 2 2 4 6grad f x y xi yj i j⋅ = + ⇒ +



   

 
The maximum change of the function f in 
any point is in the direction of the gradient. 
 
The scalar product between a unit vector 
parallel to the level curve u





and the gradient 

is 0.  0f u∇ ⋅ =






  which means that the 
gradient of the scalar field is perpendicular 
to the level surface. If the unit vector is 
perpendicular to such a level curve the 
quantity above is the normal derivative 

( )f grad f n
n
∂

≡ ⋅
∂







  

r  
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This gives us the natural flow of a heat current which follows the negative gradient of T. The 
same is true for the flow of water down a hill, it follows the negative gradient. 
This is also true, as we have seen for the electric field E



which follows the negative gradient of 
the potential V. E grad V= − ⋅




 
Another example is the series of level curves x2-y2=A, which is a series of hyperbolas, 
representing the level curves of four equal charges. 
 
Example: Suppose that the temperature at the point (x,y,z) is given by (1.5)

2 2( , , ) 273T x y z x y xyz= − + +  
In which direction is the temperature increasing most rapidly? That would be in the direction of 
the gradient. 
(1.6) (2 ) ( 2 )T x yz i y xz j xyk∇ = + + − + +




 

 

At the point (-1,2,3) this is equal to ( 1, 2,3) 4 7 2T i j k∇ − = − −



 

 
The rate of increase is 16 49 4 69gradT = + + =



We know of course that the temperature is 

decreasing most rapidly in the direction of gradT−


according to the formula for heat flow (See 

chapter 20) j k gradT k T= − = − ∇⋅
 



 
 
Optional 25.7 Laplace and Poisson equation for the gravitational and electric fields. 
(optional) 
For both the gravitational field and for the electrostatic field we have the local expression of the 
divergence: 

(1.7) 
0

4  and el
gdiv G divE ρπ ρ

ε
Γ = − =



 

We also know that both the gravitational field and the electrostatic field are conservative, thus 
both derive from a potential scalar field function. In order to distinguish them here I use the letter 
Φ for the gravitational potential and V for the electrostatic potential: 

(1.8) 
 or   

or 

grad

E V E grad V

Γ = −∇Φ Γ = − Φ

= −∇ = − ⋅


 


  

 

We see therefore that in both cases the vector fields can be expressed by the scalar fields: 
 

(1.9) 
( )
( )

0 0

 4  4g g

el el

div grad G G

div grad V V

π ρ π ρ

ρ ρ
ε ε

− Φ = − ⇒∇⋅∇Φ =

− ⋅ = ⇒∇⋅∇ = −


 


 

 

 
We have encountered such expressions before,  
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(1.10) 
2 2 2 2

2 2 2

This is the so-called Laplace operator, which occurs in many
partial differential equations:

, ,div grad
x y z x y z
∂ ∂ ∂ ∂ ∂ ∂

⋅ = ∇ ⋅∇ = ∆ = = + +
∂ ∂ ∂ ∂ ∂ ∂

 

 

The electrostatic potential obeys the typical Laplace equation: 

(1.11) 
2 2 2

2 2 2
0

elV V
x y z

ρ
ε

 ∂ ∂ ∂
∆ = + + = − ∂ ∂ ∂ 

 

If the right side of this differential equation is 0, it is known as the Laplace equation which, with 
proper boundary conditions leads to description of the electrostatic potential in a particular 
domain which does not contain any charges. 
If the charge density is not 0, the equation is known as the Poisson equation. 
We see that similar differential equations appear in completely different physical contexts. The 
mathematical problems remain the same, and the solutions which may be easier to come by and 
interpret in one area can then be readily transferred into another area.  
From our previous considerations we know that the electric potential at point (1) created by a 
charge at point (2) is given by:  

(1.12) 
( ) ( ) ( )

1 2 2 2
1 2 1 2 1 2 1 2

(2) q(2)( ) =  e ek q kV r
r r x x y y z z

=
− − + − + −
 

 

 
 
 
We can readily translate all this information from heat flow and temperature fields  into 
electrostatics where we are dealing with electric fields (vector fields) and potential fields (scalar 
fields) in the exact same way. 
 

(1.13) E grad V= − ⋅
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