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dx 
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n  

  E


 

24.1 Flux of a vector field through a surface: 
We can visualize the electric field as continuous lines, starting in a positive charge and ending in 
a negative one, or at infinity.The electric field vector-function is tangent to the electric field line 
at each point.The direction (arrow) of the line indicates the direction of the electric force on a 
positive test charge in the field. 
The number of lines per unit area through a perpendicular surface is proportional to the electric 
field strength (its magnitude). Therefore the field lines are closer together in a stronger field. 
Electric field lines can never cross, but can end in infinity, which is another way of saying that 
the negative charges are too far away to be considered. 
 
 
A visual representation of a vector field ( , , )E E x y z=




 by field lines  is very much similar to the 
stream lines of a liquid density, in which case we have encountered the liquid density vector 

vj ρ=




 (ρ is the liquid density, and ( )v x,y,z is the velocity vector field, which by definition can 
have a different value from location to location. See ch20 First Law of Thermodynamics.doc)  
In the case of the electric field there is no flow of matter involved. It is a mathematical model. In 
the case of the intensity of a wave we encountered the concept of an energy flow through a 
cross-section. This concept is generalized with the concept of a flux Φ.  
We define an oriented surface A or S

 

as a vector whose direction is perpendicular (normal) 
to a surface element and with the magnitude which is 
equal to the area:  
(24.1)

 
,   is a unit vector normal to the surface. For a small area

we have d

A A n n

A ndA ndxdy

= ⋅

= =



 



 

 

 
 
 
 
 

 
 
 
(Recall that you can mathematically define a vector perpendicular to two other vectors in a plane 
by forming the cross-product of the two vectors in the plane.) 
 
For a closed surface we define the normal direction as pointing to the outside of the enclosed 
volume. (A simply connected closed surface has an inside and an outside domain.) 
 
The infinitesimal flux through a surface is defined for the electric field vector as 

(24.2) 
cos

this is the scalar product between the vectors  and 

d E dA E dA

E dA

θΦ = = ⋅ ⋅






 

 

Figure 1 
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For a surface we must integrate over the whole finite surface, thus defining the flux of the vector 
field E



 as the surface integral: 
 

(24.3) 
E

surfaceA

E dAΦ = ⋅∫∫


 

Note that the above integral describes the flux through a single surface which is not closed. 
The cases we are most interested involve a closed surface, containing a volume inside of the 
surface. 

(24.4) 
For the flux through a closed surface we write:

total
closed surface

E dAΦ = ⋅∫∫




 

 
The actual integrals can be quite cumbersome to calculate. We use them only in cases with a nice 
symmetry, where the integration can be performed easily. So, don’t be overwhelmed by the look 
of the formulas. For example, the flux of the constant vector E E i= ⋅




through the surface of a 
cube parallel to the y-z plane with area  A y z i∆ = ∆ ⋅∆ ⋅




would be equal to E x y∆ ⋅∆ . The total 
flux through the whole cube of side-length s would be -s2E+ s2E=0. 
 
We use such a simple situation to illustrate the basic principle underlying Gauss’s law which is 
very useful in determining the electric field. 
 
Example: Assume that we have an electric field in the x direction xE E i=




. We put a surface in 
the form of a cube with sidelength d in its path so that a side is in line with the direction of the 
electric field. We put the corner of the cube into the origin of the coordinate system (0,0,0). Both 
surfaces have the same area magnitude A=d2. The area to the left has its normal unit vector 
pointing in the direction i−



. We call the two surfaces Ain on the left and Aout on the right.  If E


 
is uniform (constant with respect ot all variables x, y, z) the total flux is 0 
(24.5) ( ) ( ) 0total in out xA E A A E Ai Ai E i AE AEΦ = ⋅ = + ⋅ = − + = − + =

   
  

 

–Ed2+Ed2=0. This is simply the product between the magnitude of the field and the cross-
sectional area. The normal vector to the surface is opposite to the entering E-field on the left 
which gives –, it is parallel to the leaving E-field on the right, +Ed2. We can see that as long as 
the electric field does not change between the in-surface and the out-surface the total flux is 0.  
 
We are going to show that the total flux is always 0 for an electric field (even if it is not uniform) 
passing through a closed surface as long as no new fieldlines are being created inside of the 
closed surface, i.e. inside the volume within the surface. 
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So, let us figure out how the total flux changes if we allow the electric field to change from 
location to location within a small volume of sides Δx.  
In our example the electric field enters the cube on the left as the x-component Ex(x,y,z) and 
leaves the cube as  Ex(x+Δx,y,z). 
 
24.2 Localized flux: divergence and Gauss’ Law. 
If  E



is not constant in the x direction and we use infinitesimal surfaces we get a negative 
entering infinitesimal flux at x and a positive leaving flux at x+Δx, like so  
 

 
 
We call the infinitesimal flux through a closed infinitesimal surface total in out∆Φ = ∆Φ + ∆Φ . 
We separate it into the sum of the ingoing flux and the outgoing flux. Note the obvious: A closed 
surface encloses a volume. The Δ symbol indicates that we are calculating a very small flux, 
which comes about by the small surface enclosing a small volume. 
 
(24.6)

 

( )
( )

( ) ( )
( ) ( )

, , (x-component of infinitesimal surface  to it)

, ,

total net "infinitesimal" flux = , , , ,

, , , ,

I

in x

out x

total out in x x

total x x

E x y z y z E

E x x y z y z

E x x y z y z E x y z y z

E x x y z E x y z y z

∆Φ = − ⋅∆ ∆ ⊥

∆Φ = + ∆ ⋅∆ ∆

∆Φ = ∆Φ + ∆Φ = + ∆ ⋅∆ ∆ − ⋅∆ ∆

∆Φ = + ∆ − ∆ ∆  





( ) ( ) ( ) ( )

xf we multiply this expression by 1= ,  we get the result that
x
x
x

We recognize that the fraction is (in the limit of x 0) equal to the partial derivative

x x
total x x

E x x E x
E x x E x y z y z x

x

∆
∆

+ ∆ −∆
∆Φ = + ∆ − ∆ ∆ = ∆ ∆ ∆   ∆ ∆

∆ →

( )xof the x component of the vector field ,  namely E , , :E x y z


 

(24.7) 
( ) ( )

0 0
lim lim x x x x

total totalV x

E x x E x E Ed y z x dxdydz dV
x x x∆ → ∆ →

+ ∆ − ∂ ∂
Φ = ∆Φ = ∆ ∆ ∆ = =

∆ ∂ ∂  

x-axis 

y-axis z-axis 

normal unit-vector (dashed lines) 

electric field-lines, 
solid lines 
 

    Δx 

Figure 2 
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This accounts only for the flux through the two sides perpendicular to the x-axis. If we compute 
the flux through the sides perpendicular to the y and z axes we get the total flux through the 
whole surface of the cubical volume. 
 
The infinitesimal total or net localized flux through all six sides of a cube becomes : 
 

(24.8) 


yx z
total out in

divE

divE

EE Ed d d dxdydz E dV
x y z

∂ ∂ ∂
Φ = Φ + Φ = + + = ∇⋅ ∂ ∂ ∂  



 



 
This looks like some kind of a derivative. 

(24.9) 
total

divE

d E dV divE dVΦ = ∇⋅ ⋅ = ⋅


  

 

The change of flux divided by the change in volume through which the flux is defined is 
sometimes called a volume derivative and is called “the divergence of the vector-field passing 
through the volume” 

(24.10)     

total

divE

dE
dV
Φ

∇⋅ =


 

 
 
We come to the conclusion that the total infinitesimal flux of a vector field through a closed 
infinitesimal surface (surrounding the point x,y,z) is equal to the divergence of that vector field 
at the point x,y,z  times the infinitesimal volume inside that surface.  
 
 
From (24.8) we recall the definition of the div operator: 

(24.11) , , yx z
EE EdivE E E

x y z x y z
∂∂ ∂∂ ∂ ∂

= ∇ = ⋅ = + +
∂ ∂ ∂ ∂ ∂ ∂

 
 



 
 
Problem: Calculate the divergence of 23 , 2 , ln( )E xy zy z=



 
 
To extend the equation (24.9) to the whole surface we must integrate on the left over the closed 
surface 

closed surface closed surface

d E dAΦ = ⋅∫∫ ∫∫


 

  

while at the same time integrating on the right side over the volume  
 

volume
inside
the closed
surface A

divE dV⋅∫∫∫


 

 
 
The generalization of this argument leads to the equality between the total flux of a vector field 
through a closed surface and the volume integral of the divergence of this vector field taken over 
the volume enclosed by that surface.  
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This mathematical theorem is called the Gauss theorem: 
 

(24.12) 
closed surface S volume contained 

inside the closed 
surface S

E E dA divE dVΦ = ⋅ = ⋅∫∫ ∫∫∫
 



 

 
The theorem enables us to convert a volume integral into a surface integral (closed surface), 
and vice versa. The surface is any surface enclosing the volume, because the integral on the 
right side only contributes if and where 0divE ≠



. 
 
In equation (24.6) we saw that the total flux of E



  through an infinitesimal surface surrounding 
an infinitesimal volume was equal to the change of that field inside of the infinitesimal volume. 

(24.13) x x
out in total

E Ed dxdydz dV
x x

∂ ∂
∆Φ = ∆Φ + ∆Φ → Φ = =

∂ ∂
 

 
If no new charges are created inside of this infinitesimal volume, (no sinks and no sources), then 

the electric field does not change 0xE
x

∂
=

∂
and the total infinitesimal flux is 0.  We can integrate 

this over any macroscopic volume, whose boundary is the Gaussian surface. This represents the 
Gaussian theorem. If 0divE =



everywhere in the volume, then the total flux through the volume 
is 0. 
 
Problem: 
Calculate the flux of the vector field 3 , , 2E x y z= −



through the surface enclosing the 
rectangular volume being positioned along the x, y, and z axis and having the dimensions  

 
according to the figure: 

z=c 

x=a 

y=b 

( )3 0; 0
dA ibc

ibc x x
= −

Φ = − = =





 

( )3 3
dA ibc

ibc x abc
=

Φ = =





 

2
dA abk

cab
=

Φ =



0
dA abk= −
Φ =



0
dA acj= −
Φ =




dA acj
abc

=
Φ = −




z-axis 

y-axis 

x-axis 
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We calculate the flux in two ways, one, by calculating the volume integral of the divergence of 
the vector field, which is equal to 4. Thus, the answer is 4abc. 
Now we calculate the flux directly.  

(24.14)

3 , , 2

The surface vectors are perpendicular to the respective surfaces, point to the outside of
the volume, and have the area as magnitude.

V

x y z dA
∂

Φ = −∫∫






 

The surface integral of the left surface is equal to 0 because z=0 ( )2 0L
xy

zk k abΦ = ⋅ − =∫∫
 

. The 

surface integral on the right side is equal to ( )2 2  because z=czk k ab cab⋅ =
 

. You must take the 

scalar product between the vector field and the six surfaces of the volume. The surface integral at 
the bottom is 0 because x=0. The surface integral through the top is: 3 3xi i bc abc⋅ ⋅ =

 

. The flux 
through the back, in the negative y-direction, is 0 because y=0. The surface integral through the 
front is yj jac bac− ⋅ = −

 

 
If we same up all the contributions through the six sides we get 4abc, as expected. 
 
Problem: Show that the flux of the vectorfield <x,y,z> through a spherical shell of radius R is 
equal to 4πR3. 
------------------------------------------------------------------------------------------------------------------- 
Optional: Illustration of flux in liquid flow: 
In the context of the steady state flow of a liquid through a pipe we called this conservation of 
matter the continuity equation:  
(24.15)              

outin

mass density of the liquid= . 

v v 0;

total flux of liquid through a pipe = j

j= v is the liquid density vector, whi

in out

in in
in out

pipe

m m V xm V A x A
V t t t

A A

dx dxA A dA
dt dt

ρ ρ ρ ρ ρ

ρ

ρ

∆ ∆ ∆
= ∆ = ∆ = ∆ ⇒ = =

∆ ∆ ∆
− =

 − ⋅ + = ⋅ 
  ∫∫

 







ch plays the role of the electric field vector.
Both can change in magnitude and direction from point to point.

  

which describes the fact that the amount of liquid entering a closed surface is equal to the liquid 
leaving it. It is really just the conservation of mass. If Δm is the mass flowing through the closed 
surface (think of a volume as described by a cylindrical pipe) from time t to t+Δt, then the 
surface integral below is 0 and says, “what flows in” equals to “what flows out”. If Δm is 
positive that means that more mass flows out of the pipe than flows in. This is possible if the 
density of the liquid inside the volume contained by the closed surface changes, or if there is a 
source (or sink) of liquid, (a sprinkler system, or a set of holes).   
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(24.16) 

0
v lim ;  

seen from the point of view of the volume the amount of M flows out of it
in the time dt.

v=- v

t
A

A

mdA
t

dMdiv div dA
t dt

ρ

ρρ ρ

∆ →

∆
=

∆

∂
⇒ = −

∂

∫∫

∫∫









 





 
If the amount of mass lost is being replenished at all times, we are dealing with steady state flow 
and we have  v=0 v 0

A

div div dAρ ρ⇒ =∫∫


 



. 

 
------------------------------------------------------------------------------------------------------------------ 
 

24.2 Gauss’ Law for Electrostatics. 
 
The electric field lines behave like the stream lines of a fluid, with the exception that 
every single charge creates an electric field line. Also, the electric field in the classic 
field model does not involve the movement of a substance. The field is static.   

A positive charge acts as a source of electric field lines (a new field line emerges from it), a 
negative charge acts as a sink (a field-line sinks into it).  

 
One way in which an electric field can change inside an infinitesimal volume  is through the 
presence of electric charges, (which act as a source of electric fields), or, in a continous 
situation, a charge density. Instead of having single charges at various locations, we can have a 
charge density as a function of x, y, and z. In most of our cases this density is uniform. It is the 
same everywhere inside of a volume, along a surface or line. As we know from the beginning of 
these lectures, electric field lines emerge from positive charges and end in negative charges. At 
the location of any charge there is therefore a dramatic change in the electric field. (It is called a 
singularity.) 

0 0EdivE = ⇒Φ =


 
Figure 3 
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If there is such a charge density it turns out that the local spatial change of E



, the divergence of 
E


 , is proportional to the charge density ρ. If there are no charges (sources of E


-lines) or sinks 
(end-points of E



-lines) inside of the volume, then 0divE =


, otherwise we have: 
 

(24.17) 

0
0

lim

Where we also assume that the charge  is a constant.
In the most general case it could be dependent on x, y, z, t.

E
V

divE
V

ρ
ε

ρ

∆ →

∆Φ
= =

∆



 

We see immediately that this is where the rule comes from that the number of field lines per 
unit area is proportional to the charge. It is simply the qualitative expression of the above law. 

For a constant field perpendicular to a surface we get 
0 0

V QE A ρ
ε ε

= =


  

If we know the total charge in a volume or area we need to integrate both sides and apply Gauss 
law: 

(24.18) 3
0

0 0 any surface
enclosing 
the volume

Gauss' law for electrostatics, or 1st Maxwell law:
C,  is the positive or negative charge density measured in .
m

volume volume

divE

QdivE dV dV E dA

ρ ρ
ε

ρ
ε ε

=

⋅ = = = = Φ∫∫∫ ∫∫∫ ∫∫



 




E

 

 
24.4 Consequences of Gauss’ Law: 
From this we can verify: 

• The electric flux through any closed surface is 0:  

0 0 0

0

(integrate)  

                                                             

E
V A V

A

QdivE divE dV EdA dV

QEdA

ρ ρ
ε ε ε

ε

= ⇒ ⋅ = = Φ = =

=

∫∫∫ ∫∫ ∫∫∫

∫∫

  







 

V

Q dVρ= ∫∫∫
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If there are no charges inside or if the net charges inside are 0. This does not mean 
however that there are no electric fields present inside of the closed surface. We will see 
later that electric fields can also be created in ways which do not depend on singular 
charges.  

• The particular electric fields we study here do come from charges. This fact is entirely 

described by the differential law 
0

divE ρ
ε

=


 

• 
Or by the integral law (Gauss) 0

 
A

QEdA
ε

=∫∫




 

 
If we are given a charge distribution with a high degree of symmetry and want to calculate the 
electric field at a given location, we try to put a Gaussian surface through that location and 
see if we can determine the flux through symmetry considerations. If we succeed, the flux equals 
the total net charge inside of the surface. 
 
 
 
 
24.4a Analogy between the electric field and the gravitational field: 
We have had another situation where a field originated in a source. That was the case of the 
gravitational field which started in any particle of mass or energy. The corresponding differential 
law would be for the gravitational field Γ which originates at any mass distribution.  

(24.19) 11

3

4

6.673 10  (SI) universal gravitational constant;
kg is the mass-density in .
m

g

g

div G

G

π ρ

ρ

−

Γ = −

= ⋅  

The gravitational force on a mass m1 was obtained by  
(24.20) 1gF m= Γ

 

 
We see that the only difference in the two laws (24.19) and (24.18) lies in the value of the 
constant factors in front of the respective densities. The minus sign in the case of the 
gravitational field means that gravitation is always attractive.  
 
We remember from the study of gravitation inside a sphere with uniform mass density that the 
field inside of the earth at a radius r from the center stems only from the mass inside a shell with 
that radius. Gauss’ law explains easily why that must be the case. We also saw that inside a 
hollow spherical shell there is no gravitational field (no mass inside of a Gaussian surface, means 
no field originates there). Gauss’ laws shows why. Where there is no mass, the divergence must 
be 0.  
 
 
24.5 Electric field of a positively charged conducting shell: 
There are positive charges on the conducting surface A with uniform (constant) charge 
distribution σ. This means that in electrostatic equilibrium the electric field lines are 
perpendicular to the surface, pointing outward. The surfaces A1 and A2 are concentric to A.  As 
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1A


 
2A


 

surfaceA


 

+σ 

E


 

r1 

the charges repel each other and are free to move they gather at the outside of the shell. There are 
no charges inside the shell. 

0

1

 volume integral 

with the volume being a sphere of radius r

divE applyρ
ε

= ⇒


 

 
We use the mathematical Gaussian law to convert the volume integral of divE



, to a surface 
integral of E. The surface is the surface of the volume with radius r1. 
 
The electric field has the same magnitude everywhere and is always perpendicular to the surface, 
which means it  is everywhere parallel to the normal vector on the Gaussian surface also. 
Therefore, the surface integral is simply the constant field multiplied by the surface. The result is 
Coulomb’s law. 
 

1 1

1

0 0Gaussian sphere Gaussian sphere 
with radius r with radius r

2
1 1 2 2

0 1 1Gaussian surface 
with radius r

14
4 e

QdivE dV dV

Q QE dA E r E k
r r

ρ
ε ε

π
πε

⋅ = =

↓

⋅ = ⇒ = =

∫∫∫ ∫∫∫

∫∫





 

(24.21) 2
0

1
4

QE
rπε

=  

 
This whole procedure is summarized in 
the Gaussian law: The net flux through 
any closed surface is equal to the total 
charge contained inside of that surface, 

divided by the permittivity constant. It does not matter if you have a line, surface, or volume 
charge density. A volume integral will give a non 0 contribution only where there are 
charges. In the case of a surface charge density like above, the integral on the right side 

becomes a simple product 
0 0 0

;Q is the net charge contained inside the volumeQV Aρ σ
ε ε ε

= =  

(24.22)

1

1
0Gaussian surface 

with radius r

QE dA
ε

Φ = ⋅ =∫∫


 

Note that you must not write 
0

divE σ
ε

=


since this is dimensionally incorrect. 
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24.6 Using Gauss’s Law to Calculate the Electric Field: 
 
Conductors in electric equilibrium : As free charges (electrons) placed on a conductor can 
move with only the slightest electric field difference, they will move until they are separated 
from each other as far as possible. Consequently, all free charges on a conductor in electric 
equilibrium must sit on top of the surface, and the electric field inside of the conductor is 0 (This 
is true for homogenous materials only, i.e. the same metal. At junctions of different metals 
small electric fields do exist.). 
The charges on top of the surface are bound slightly to the conductor by the small internal atomic 
forces (electron shells).  The electric fields are perpendicular to the surface. On sharp edges the 
density of field lines is greatest. 
 
 
Problem: Find the electric fields inside and outside of two concentric conducting spheres. The inside sphere has a 
charge of 2Q. The outside sphere has a charge of –Q. Start by drawing a picture with the two concentric spheres and 
apply Gauss’ law. We know that inside of either conductor the electric field is 0. The radius of the smaller sphere is 
a. The inner radius of the outer shell is b, the outer radius of the outer shell is c. The electric field between b and c is 

2

2ek Q
r

+ . The electric field outside of the outer shell is: 2
ek Q
r

+  

 
24.7 Electric field of an infinite line charge: 
We know immediately that the electric field is perpendicular to the line, pointing outwards for a 
positve charge. The line being infinite, we can place a vertical axis on which to determine the 
electric field anywhere. The horizontal components of the electric fields created by the charges 
to the left and the right of this perpendicular axis cancel each other out. The resulting electric 
fields are therefore perpendicular to the line. They spread radially in all directions. The field is 
only dependent on the perpendicular distance r. At any constant distance r from the line the 
electric field must be the same. Thus, we choose a concentric cylinder of radius r and length L 

as our Gaussian surface and calculate the total flux through it. We immediately get that  

E


 

Q  
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S1 

S 

+σ 

+σ 

+σ+ 

Note that at the origin of each arrow 
there is a charge. 

E


 

(24.23)


surface area 0 0 0Gaussian
of the mantel cylinder of
of the cylinderradius r and

length L

charge inside the cylinder2 Q LE dA rL E λπ
ε ε ε

Φ = ⋅ = ⋅ = = =∫∫




 

The flux through the top and bottom of the Gaussian cylinder is 0. (Why?). 
We therefore get the electric field as: 
   

 (24.24)    ( )
0

2
2

elr
r

kuE r u
r r

λλ
ε π

= =






 
The electric field is perpendicular to the wire and decreases with 1/r with the distance r from the 
wire. 
 
24.8 Electric Field of a Thick Slap of Conducting Material. 
Find the electric field created by a thick and infinitely large slap of conducting material with a 
surplus positive charge on it with charge density σ. Note that in eloctrostatic equilibrium all 
charges are uniformly distributed on the outside of the conductor. The electric field inside of 
the conductor, between the charged surfaces is 0. 
The charge contained within the Gaussian cylinder is Aσ . We argue like in the case of the 
infinitely long line in the preceding example to see that the electric field lines must be 
perpendicular to the surfaces. We place a Gaussian cylinder through the slap of material with the 
circular ends parallel to the surfaces. The upper end of the cylinder has area A and intercepts a 

point at a distance r from the  charged surface. 
We place the lower circular end inside the slap, 
where we know that there is no electric field. 
The surface integral equals 

A V

E dA E dA E A
∂

⋅ = ⋅ = ⋅∫∫ ∫∫
  



. 

Therefore we have: 

(24.25)
2

1
0 0Gaussian cylinder Gaussian cylinder

2
1

0Gaussian 
closed surface

;AdivE dV dV A r

E dA E r EA E

ρ σ π
ε ε

σπ
ε

⋅ = = =

↓

⋅ = = ⇒ =

∫∫∫ ∫∫∫

∫∫







 

The volume integral on the right is 

0Gaussian cylinder

dVρ
ε∫∫∫ . As all charges are sitting on 

top of the surface (above or below), the 
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contribution to the integral come strictly from the surface, therefore the result of the integration 

is 
0

Aσ
ε

. The electric field inside the conductor is therefore 0. 

Note that in our setup there is only a flux through the horizontal upper and lower surface of the 
cylinder. The electric field inside of the conducting slap is 0. Thus the electric field outside of a 
charged plane conductor is  

(24.26)
0

E σ
ε

=  

 
If we use a Gaussian cylinder that passes through the slap, we get the same field on the other 
side, same amount of charge, same surface. 
 
We could also take the outside of a box as our Gaussian surface (instead of the cylinder). We 
place the box symmetrically around a segment of a finite slap of charge. Inside of the the slap 
there is no electric field, therefore no flux. Similarly, the flux is 0 at the sides where the electric 
field is perpendicular to the surface normal vectors.  Therefore, the only contribution to the flux 
comes from the top or the bottom surface,  
 
 

(24.27) 
0 0Gaussian box Gaussian box

0 0Gaussian 
closed surface

AdivEdV dV

AE dA EA E

ρ σ
ε ε

σ σ
ε ε

= =

↓

⋅ = = ⇒ =

∫∫∫ ∫∫∫

∫∫







 

Note that the electric field generated by a conducting sheet is twice as large as that of a sheet of 
charge, because all field lines originating from charges go only to one side of the sheet. 
 
24.9 Electric Field Created by a Sheet of Charges:  
We get:  

(24.28) 
0 0

2
V

AEA dVρ σ
ε ε

− = =∫∫∫  

A sheet of charges has electric fields emanating to both sides of the single sheet of charges.  
The electric field generated by negative charges points in the opposite direction of the normal 
vectors to the surface, thus the negative sign. The surface is 2A (top and bottom of the Gaussian 
box), whereas the surface of charges is A. The surface integral contributes only in the area on top 
of the charges. For a sheet of electrons we get: 

(24.29) 
0 0 0 surrounding sheetbox

Q AdivE E dA EA EAρ σ
ε ε ε

= ⇒Φ = ⋅ = − − = =∫∫
 



 

 

(24.30) 
02

E σ
ε

= −  
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24.10 Conductor in Electrostatic Equilibrium Inside of an Electric Field : 
If we place an electrically neutral slap of conducting material into a preexisting uniform electric 
field extE



the field will move the negative electrons to the lower side of the slap, which results in 
having positive charges at the top of the slap. Thus, an interior electric field will be established 
until it cancels the exterior electric field. As long as a field imbalance exists, electrons will move 
lower. This will only stop when electrostatic equilibrium has been established, i.e. when the 
interior electric field inside the slap is 0. 

• The electric field inside is 0. 

•  
• All charges are distributed on the outside. 

• The electric field just outside the charged conductor is 
0

; QE
A

σ σ
ε

= =  

• On an irregularly shaped conductor, σ is greatest where the radius of curvature is 
smallest. Sharp metallic points have the stronger electric fields. We can visualize a sharp 
corner in a metall as a tiny semi-sphere which creates an electric field outside of it 

+++++++++++++++++++++++++
 

-------------------------------------------
 

The exterior electric field induces an interior 
field which is equal and opposite, thus resulting 
in a 0 net interior field. 

Gaussian 
Surface  

E


 

Q Aσ=
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proportional to 1/r2. A small radius will lead to a strong electric field, i.e. relatively dense 
electric field lines, diverging from the sphere. This density is proportional to the surface 
charge density. 

•  
24.11 Flux and Solid Angle: 
Calculate the circular surface element of a spherical shell with radius R and angle θ. The circular 

surface element has a horizontal radius r=Rsinθ. 
 
(24.31)

0
0

surface area

 tangential line element of the circular 
cross-section  of the sphere. dA is the circular 
strip of circumference 2 r with height ds=Rd

2 2 2 sin
r

ds Rd

dA r ds r Rd R R d
θ

θ

π θ

π π θ π θ θ

=

= ⋅ = ⋅ = ⋅∫∫ ∫ ∫ 



( )2 2

0

2 sin 2 1 cosR d R

θ

θ

π θ θ π θ= = −

∫

∫
 
For θ=π/2 we get the surface area of the upper 
hemisphere, which is 2πR2. The stereo angle 
which subtends the area in (24.31) is called 

the solid angle Ω. We can write the area then as Ω R2. 
 
The electric field created by a centrally located charge q inside this sphere of radius R is radial. It 
generates a flux through the above surface of: 

(24.32) ( )2
2

0 0

2 sin 2 sin 2 1 cose
e e

spherical
surface

k qEdA R d k q d k q
R

θ θ

π θ θ π θ θ π θ= = = −∫∫ ∫ ∫


 

This means the flux is independent of R.  
The concept of the solid angle allows one to also quickly see why there is no electric or 
gravitational field inside the sphere, without using Gauss’s theorem. The forces from opposite 
sides at any point inside the sphere cancel each other out because the solid angle is the same. 
The charge on opposite sides of the point in question is proportional to the areas which are equal 

to 2 2
1 2 and R RΩ Ω respectively. There are only 

vertical forces in the direction of the bisector 
of the angle remaining. These forces are equal 
to, respectively, 

2
1 1

2 2
1 1

2
2 2

2 2
2 2

 

and 

e e
e

e e
e

k dq k d R k d
R R

k dq k d R k d
R R

σ σ

σ σ

Ω⋅
= = − ⋅ Ω

⋅ Ω⋅
= = + ⋅ Ω

 

If we make the angle of infinitesimal size the 
areas dA are perpendicular to the radius. The 

R 
θ 

r 
 

R1 

 

R2 

dΩ
 

dΩ
 

2
1 1dq R dσ= Ω  

2
2 2dq R dσ= Ω  
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radius cancels out and, as the forces from the top point to the opposite direction as the forces 
from the bottom, the net force at the intersecting point is 0. 
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