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Problems: See website 
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23.1 Electric Fields and Forces: 
An electric charge is a fundamental property of matter, similar to the property of mass. 
Electric charge comes in two flavors, one is called negative charge, the other is called positive 
charge. Electric charge is designated with the letter q, preceded by a + or -. The charge on the 
elementary fundamental particle electron is negative, the charge on a proton, which is also a 

fundamental 
particle, is 
positive. 
Charge, being a 
fundamental 
property, cannot 
be further 
analyzed. 
Unlike mass, 
charge comes in 
discrete 
multiples of one 
single charge 
quantum which 

has the value of  
 
e-=-1.602 176 462 (63)·10-19 Coulombs in the SI system.  
A typical macroscopic charge is in the order of a few micro-Coulombs or μC. Any such charge 
consists of an integer number of elementary charges. Q=Ne- 
As we have learned earlier in the context of atoms, unlike charges attract each other, like 
charges repel each other according to a law which is very similar to Newton’s law of universal 
gravitation. On a macroscopic level we are only dealing with electrons: a surplus of electrons 
results in a negative total charge; a deficiency of electrons results in a positive charge. 
All molecules and atoms are electrically neutral if observed from a distance because, obviously, 
the number of electrons (negative charges in the atomic shells) is balanced by an equal number 
of protons (positive charges at the nuclei). 
 
23.2 Electric Induction. 
Materials can be classified according to the ease at which charges can move inside of them. We 
distinguish between conductors, in which electrons can move relatively freely and insulators in 
which electrons are bound to molecules. Electric conductors are typically metals. In copper for 
example, the electrons on the outmost shell of the atoms are shared by the all copper atoms in a 
sample. Only a slight exterior force is necessary to make all these electrons move in one 
direction or another. Such a force is provided, for example, by excess charges on another piece 
of material. Those excess charges create an electric field around them, which is very much like a 
gravitational field, except that it only acts on other charges, and not on mass. The process in 
which these fields act on these other charges through empty space is called induction. Note that 
electrical insulators are also good thermal insulators, and electrical conductors are also good 
heat conductors. Insulators can be locally charged, whereas in a conductor, electrons always 
move around on the surface of the conductor until electric equilibrium is established and a 
uniform distribution of charge has been achieved. Note that a negative electric charge in a 
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Figure 1 

The force on the charge q2 points to the charge 
q1 if the two charges have different signs.   
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material means that there is a surplus of negative charges (electrons), whereas a positive charge 
means that there is a deficiency of negative charges (electrons.) There are no free protons 
floating around in matter. 
 
23.3 Coulomb’s Law. 
The fundamental force between two point charges q1 and q2 is given by Coulomb’s law: 
(The coordinate system has its origin in the charge q1;  
q2 is located at the point P(x,y)) 

 (23.1) ( )
( )
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In the above definition we placed the charge q1  into the origin of our coordinate system. This 
placement should remind you of our choice in gravitation theory where we placed the attracting 
body (sun or earth, usually) into the center of the coordinate 
system.

 
If we do not place the charge q1 into the origin of the coordinate system we need to find the 
vector force with magnitude and direction, acting on charge q2. 
This force is parallel to the line connecting the two charges. It points away from q1 if the force is 
repellent, it points towards q1 if the force is attractive. Let us use the convention in which we 
write  
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(23.2)
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The force on charge 2 created by a series of charges denoted qi, with i=1,3,4,5,6…is given by the 
sum: 
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23.4 Definition of the electric field vector function. 
Both charges create what is called an electric field around them. This field becomes observable 
if we place a third charge q0 at any point in space. We designate that point with the vector 

, ,r x y z=
 . (In the preceding section we calculated the force at this point, where the charge q2 

was located.  The vector field ( )E r


 at this point is defined as the resultant force acting on a 
positive test charge q0 at this point divided by the positive unit charge q0. 
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The value of the test charge is of course irrelevant as it is cancelled out. 
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The effect of this 
definition is that a 
negative charge –q1 at 
point P1 creates an 
attractive field at the 
location P(x,y,z) (with 

respect to the charge q1),  
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Figure 3 
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whereas a positive charge q2 creates a repellent field at P(x,y).  
 

(23.6) ( )2
2 2 3
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The resultant electric field is the vector sum of the individual fields. 
(23.7) 1 2E E E= +

  

 
For n charges located at the points (xi, yi) we get the resultant electric field at any point (x, y) in 
the plane by: 
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Conversely, the force acting on a charge q3 placed in an electric field E is given by: 

(23.9) 

3

, ,

, ,

( , , ) ( , , )

Note that both  and  are field vectors with components, 

in the case of : ,  each of which is a 

scalar function of the variables x, y, z. 

( , , ) ,

x y z

x y z x y

F x y z q E x y z

E F

F F F F

F F F F F x y z i F x y

=

= = +

 

 






( ), ( , , )zz j F x y z k+




 

 
  



Dr. Fritz Wilhelm,                                                                                     Page 6 of 16  
Physics 230 C:\physics\230 lecture\ch23 electric field.docx    
Last printed: 10/11/2009 2:16:00 PM; last saved: 10/11/2009 2:16:00 PM 

 

 
Here is another example: 

 
A word about vector notation:  

(23.10)
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The total resultant electric field at the point ( , , )P x y z created by n charges iq  situated at the 
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Figure 4 
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               ( ) ( )

i

2 2

 is the unit vector pointing from the charge q  (+ or -) to the point
P(x,y,z) where we calculate the electric field. 
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Note the convention I use  for designating vector components: They are enclosed in angle 
brackets <a,b>:(23.12)
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In the earlier chapters about gravitation we also talked about the gravitational field. That 
concept is the same as the concept of the electric field. The gravitational field, which we may 
call Γ



 (capital γ, Greek for G.) is the result of a distribution of masses. We don’t want to use G, 
because that can be confused with the universal gravitational constant G. The major difference is 
that gravitational forces are always attractive. There are no negative masses 
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This resultant gravitational field can be detected anywhere in space by placing a test mass there. 
In contrast to the electric fields all individual gravitational fields have a negative sign in front of 
the vectors because they are always attractive fields. 
 
23.4a Electric field of a dipole: Let us calculate the resultant electric field in the case of a 
dipole, which consists of two equal and opposite charges separated by the distance 2a and at a 
large distance perpendicular to the connecting line of the two charges.  
 
We place the two charges on the x-axis, symmetrically around the y-axis. This means that +q is 
located at x1=-a, and –q is located at x2=+a. (This configuration is called a dipole.) I use two 
approaches to find the result. 
First, we simply calculate the resultant field magnitudes at the distance y from the origin. The 
magnitude of both fields is:  

(23.14) 2 2 2
1 2 2 ;kqE E r a y

r
= = = +  

From a drawing we can see that the resultant field points in the positive x direction. The 
component  is 2E1cosθ with cosθ=a/r.  
Therefore  
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(23.15) 
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In the next approach we simply substitute the coordinates of the two charges, into (23.11), noting 
that the electric field is located at x=0 and y; 1 1 1 2 2 2; ; 0; ;q q x a y y q q x a= + = − = = = − = . 
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Now we use the fact that 1 2 1 2 and x ; 0x a a y y= − = + = = The y-components cancel and what 
remains is a vector field pointing in the +x direction. 
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23.5 Electric field of a continuous distribution of charges: 
 
For a continuous charge distribution the summation over individual charges turns into an 
integral over the charge distribution. We distinguish between charge densities for volume, 
surface, and line distribution of charges. I give the variables the index 1, to remind us that these 
variables are integration variables of definite integrals. 

1. (23.188) 

1 1 1

1 1

1
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;

;

Q dq dV dx dy dz
V
Q dq dA dx dy
A
Q dq dx
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The general formula for the electric field is then: 
(23.19)  
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∫



 



ce from the charge element  to the test point P.dVρ

 
 
23.5a Example 1 (rod of length l): Calculate the field created by a uniformly charged rod of 
length l with charge density λ. The point where you want to calculate the field is located at a 
distance d from the end of the rod along the axis of the rod. The charge is distributed over the rod 
of length l. It is over this length that the integration has to be performed.  

 
Generally, you have to find the functional relationship between the infinitesimal charge element 
λdxi and ri, the distance from this element to the point where you need to calculate the electric 
field. Determine the direction of the field first, and then its magnitude. 
Obviously, the direction of the resultant field is the positive x-direction. The magnitude of the 
field is given by the integral: (23.20) 
  

d 

( )E x


 
1dxλ    x1 
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Note that x1 is not the coordinate of the point P(x) where we calculate the electric field but the 
coordinate of the charge element λdx1 to P. This distance varies from 0 to l, which are  the limits 
of integration.  
If we want to calculate the field at the distance d to the left of the charged line, the field will 
point to the left. It’s magnitude will be the same. 
 
 
 
 
 
 
  
 
If we want to calculate the electric field at an arbitrary point in the x-y plane, we proceed as 
follows: 
(23.21)
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 (23.22)
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23.5b Example 2 (infinite line): Calculate the electric field at a perpendicular distance “a” from 
an infinitely long line with linear charge λ. 
Because of symmetry only the y-components of the electric field will contribute to the final 
result. Every positive x component will be cancelled by a negative x component. Therefore: 
 
  

 
Note: In some textbooks the integration variables are called x, y, z. This can give rise to 
confusion because we calculate the electric field at the point (x, y). However, as we are dealing 
with definite integrals the integration variables disappear in the final result. You just need to 
keep account of your variables. For this reason alone it is of advantage to make a drawing and 
clearly identify your variables.  
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(23.24) 
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∫
 

(23.25) 
0

2 1( )
2

e
y

kE y a
a a
λ λ

πε
= = + =  

 
 The final result is only dependent on the y value (here fixed as y=a, to avoid confusion.) 
Another way to integrate this: 

(23.26) 1
2 2
1

cosy e
dxdE k

x a
λ θ=
+

 

 

(23.27) 
( )

21
1 1

2 2 2 2 2 2 2 2 2
1

tan ; tan ; sec

tan 1 tan sec

x x a d xa d
a

x a a a a a

θ θ θ θ

θ θ θ

= = =

+ = + = + =
 

(23.28) 
2

1
2 2 2 2 2

1

sec cos coscos
sec

e e
y e

k a d k a ddxdE k
x a a a

λ θ θ θ λ θ θλ θ
θ

= = =
+

 

The integral is symmetrical around the y-axis. So we just integrate from 0 to π/2 and multiply the 
result by 2. The angle θ varies from 0 to π/2.  

(23.29) ( )
2 2

2
2 2 20

0 0

2 cos 2 2 22 sin 1 0e e e e
y y

k a d k a k a kE dE
a a a a

π π
πλ θ θ λ λ λθ= = = = − =∫ ∫  

23.5c Example 3 (Charged ring): Calculate the electric field created by a uniformly charged 
ring of radius “a” at a location on the axis perpendicular to the ring. 
We calculate the field on the x-axis and place the surface of the ring perpendicular and 
concentric to the x-axis. 
 

 

x 
a 

r 
1dE


 

2dE


 

dq ds a dλ λ α= =  

θ  
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The field components in the y direction cancel each other out. (The relationship between a, r, x is 
fixed. The contributions in the x-direction are the same for every element of charge dq1. We 
therefore get: 

(23.30) ( )

2

32 2
2 20 2

2( ) ( ) cos cos

2

e
x e e

k a x xE x E x ad k k Q
r r r x a

a Q

π π λθ θ λ α

π λ

= ⋅ = = =
+

=

∫

 
We can also use Cartesian coordinates directly from Error! Reference source not found. 

(23.31)
( ) ( )

( ) ( )

2

1 13
2 20 2

1 1

2 2

3 3 3 3
2 2 2 2 2 2 2 20 02 2 2 2

with 0; ; 0

2

0 0

x e

e e
x e e

xE k ad x y a y
x x y y

k ax k Qxx xE k ad k ad
x a x a x ax a

π

π π

λ α

λ πλ α λ α

= ⋅ = = = =
 − + − 

= ⋅ = ⋅ = =
       + + +− + −       

∫

∫ ∫
 

 
 
At the center of the ring x=0 and the field is 0. At a very large distance x, the ring behaves like a 
point charge.  
 

(23.32) 


2 2

lim ( )x e
x

xE x k Q
x a→∞

=

+( )
3 3 2
2

e ek Qx k Q
x x

= =  

 
 
If x is much smaller than a, we can neglect x in the denominator. 

(23.33) 


0 2

lim ( )x e
x

xE x k Q
x→

=

( )
3 3

2 2

ek Q x
a

a
=

+

 

 
 
If, in addition, we put a negative charge q1 at x, we get a magnitude of force on this charge which 
is equal to:(23.34). We get the differential equation for a spring: 
 

(23.35) 
( )0

its solution is a sinusoidal function with angular frequency :

cos ;

s

s

F mx k x

kx x t
m

ω

ω φ ω

= = −

= + =



 

We compare this with the force acting on a negative charge placed near the center of a positively 
charged ring 
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1
3

21 1
3 3;

This means that the charge negative charge oscillates back and forth around the equilibrium point with 
the frequency .

e

e e
s

k q Q
k q Q k q QaF x k x

a m ma
ω

ω

= − = − = =

 
23.5d Example 4 (Charged disk): 
Calculate the field created by a uniformly charged disk of radius R with charge density σ, along 
the axis through its center. The exact argument of the previous example shows that only 
contributions to the electric field parallel to the x-axis will add up. We use the result of that 
example and say that the field calculated there in (23.30) is the result of a charged portion of the 
disk. The total charge Q becomes an infinitesimal surface charge-element. 2dq dA adaσ σ π= = ⋅  

(23.36) 2Q dq a daσ π→ = ⋅

 
The integration now takes place over “a” which varies from 0 to R,  

 ( )

( )

2 2

2 2 2 2
0

3
2 20 2

cos 2 ; ( ) cos 2

2

R
e e e

x x
x x
r x a

a R

e
a

k k kdE dq ada E x ada
r r x a

adak x
x a

θ σ π θ σ π

σ π

+

=

=

= = = =
+

=
+

∫

∫

 
and we get:  
 
 
 
 

x 
a 

r 
1dE


 

2dE


 

2dq dA adaσ σ π= = ⋅

 

θ  

R 
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+σ 

-σ 

(23.37) 

( )

( )

( ) ( )

2 2

0

1
2

3 1
2 22 2

1 1
2 2 2 22 2

  setting z= ; 2

1( ) 2 2

1 12 2 1

a

x e e e

a R

e e

x a dz ada

dzE x xk xk z xk
x az

xxk k
x x R x R

σπ σπ σπ

σπ σπ

=

−

=

+ =

 
 = = − = = 
 + 

   
   − = −   
   + +   

∫
 

23.5e Infinite Sheet of Charge. 
If we let R go to infinity we are dealing with an infinite sheet of uniform charge. Electric field-
lines diverge from both surfaces. The denominator goes to infinity, the fraction becomes 0 and 
the whole field turns into the simple expression 2kπσ. We use: 

12
0

0

1 ;  with 8.85 10 . . permittivity of free space
4ek S Iε
πε

−= = ⋅  

The electric field of an infinite sheet of charge is given by the constant expression 

(23.38) 
0

2
2eE k σπσ
ε

= =  

 
An often used device consists of two conducting parallel plates which have positive and negative 
charge surface densities respectively, which can be created through the connection to a battery. 

The electric field between those plates is constant. (It is 0 outside of 
those plates of the parallel plate capacitor.)  

 
 

 
Between the two sheets the positive sheet generates the field 

1
0

j
2yE σ
ε

=




the negative sheet generates the field Ey2=

2
0

j
2yE σ
ε

=




. The vector sum of the two fields is the upward pointing field with magnitude 
0

σ
ε

.  

 
Such two plate assemblies are convenient for experiments with charges inside a constant 
electric field. Inside such a capacitor we have the constant electric field: 

(23.39) 
0

parallel plate capacitor: E σ
ε

=  

 
23.6 Motion of a charge in a constant electric field. 
If we inject electrons from the left with initial velocity v into such an electric field they will 
experience a constant downward force: 
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(23.40) 0

;

e

e

eF qE j m a

qEa
m

σ
ε

= = − =

=

 








 

This means that we are dealing with the familiar situation of projectile motion with a downward 

acceleration of 
0

e
m
σ
ε

. Everything we learnt when studying kinematic formulas and projectile 

motion obviously applies. 
 
Example: Study its motion: 
This is exactly like the situation where a ball is thrown horizontally. The downward force of the 
electric field is qE, therefore we have (directing the y-axis downward): 

(23.41) 
2

2 consty
d y qEm qE a a y
dt m

= ⇒ = = = =  

We have the kinematic equations: 

(23.42) 

2 2
0x x 0x y y

1v ; v v ; ; v ; v 2
2

x t y at at ay

qEa
m

= = = = =

=
 

 
 
A typical value for an electric field would be 200 N/C. The mass of an electron is 9.1E-31kg, its 
charge is 1.6E-19 C. 
 
 
 
 
 
 


