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22.1 Heat Engines and the Second Law of Thermodynamics. 

(22.1) 

Heat is the energy of a disordered movement of molecules. 
In a heat engine we attempt to turn the disordered movement 
into a ordered movements which can be used to 
do work on a continous, cyclical basis.

 

The ocean is a huge heat reservoir, in some areas with water temperatures of 25 degree Celsius. 
Wouldn’t it be nice to build a ship with an engine that takes hot water out of the ocean, extracts 
work from it, during which process the water cools down. It seems reasonable to think that the 
energy difference Q mc T= ∆ could be turned into work. Such a ship could run on hot water so to 
speak and leave a trail of ice behind it. Even though this sounds plausible, it cannot be done.  
The crucial point in this example is that we would have a machine which runs on the extraction 
of  energy from a single heat reservoir, the ocean. Its cycle would start and end in the same heat 
reservoir. (This is called a perpetual machine of the second kind. BTW, a perpetual machine of 
the first kind would run, do work, without extracting energy from anything in the world.) 
 
The statement that we cannot build a perpetual motion machine of the second kind is the essence 
of the second law of thermodynamics.  
There are more sophisticated ways to say the same thing, some of these ways we are going to 
examine in more detail. 
A heat engine carries some working substance (gasoline vapor-air mixture, steam) through a 
cyclic process during which (1) the working substance absorbs heat Qh from a high-temperature 
energy reservoir (exploded gasoline-vapor-air mixture, hot steam), (2) work is done by the 
engine (exploding gas pushes piston), and (3) energy is expelled by heat Qc to a different 
reservoir at a lower temperature. This cycle is continously being repeated. 

 
The system to which we apply our 
thermodynamic variables is a gas, which 
undergoes a cyclical process, forms a closed 
loop in the PV-space. The change in internal 
energy ΔU is therefore 0. 
The heat exchange consists of stage (1) and (2). 
In stage (1) heat Qh enters the system at the 
higher temperature Th, and heat Qc leaves the 
system at Tc. Work is done by the system 
(engine), therefore Weng is negative. We 
indicate that by using –Weng.  

(22.2) 0 h c engU Q Q W∆ = = − −  
 

(22.3) eng h cW Q Q= −  
 

The thermal efficiency e is the ratio of the work to the heat input, it is the ratio of the work you 
get to the energy you pay for: 
 

Hot reservoir at Th 

Cold reservoir at Tc 

Engine-
G  Work W 

done by 
system 
(engine) 

Heat Qh enters 
system 

Heat QC  leaves 
system 
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(22.4) 1eng h c c

h h h

W Q Q Q
e

Q Q Q
−

= = = −  

  
This leads to a second way of stating the second law of thermodynamics:  
 
(22.5) The thermal efficiency of a heat engine is always smaller than 1.  
Example: 
The human body can be modeled as a heat engine to some degree, burning carbohydrates and fat 
and producing heat, energy, water and carbon dioxide in complex chemical reactions. These 
reactions require catalysts or enzymes to occur at low temperatures, around 40 °C. A typical 
sugar has an energy content of about 5000 cal/g. Let us assume that the human body has an 
efficiency of 0.1. How much work can the body do with 1 gram of sugar? How much unusable 
energy is produced? 

(22.6)     0.1eng h c

h h

W Q Q
e

Q Q
−

= = =  

The body can do 500 cal or 2009 J of work. It can lift 1kg through a vertical distance of 200 m. 
4500 cal cannot be used for doing work.  
 
 

22.2 A Heat Pump or Refrigerator, 
serves to cool down a heat reservoir. Heat 
(hot air) Qc is taken out of the cooler 
reservoir and ejected into the warmer 
reservoir as Qh. To perform this cycle the 
necessary work-energy is delivered to the 
system, for example through the electricity 
running a refrigerator. This means that W 
is positive. We see that such a device is 
essentially the reverse process of a heat 
engine, in which work is being generated. 
(The book by Serway labels the heat 
amounts differently, be careful.) 
 

(22.7)
0 c h

h c

U Q Q W

W Q Q

∆ = = − + ⇒

= −  

The coefficient of performance COP (in 
cooling mode) is defined as the ratio of heat 

taken out of the cold reservoir (the fridge) and the work necessary to do this (what you pay for.) 

(22.8)    (in cooling mode) cQ
COP

W
=  

refrigerator or 
heat pump.  

Heat Qc taken 
from the cool 
reservoir to 
cool it more. 

Work W 
delivered into 
the system to 
run the pump 

Heat Qh 
ejected into the 
environment. 
Th 

Cold reservoir at Tc 

Hot reservoir at Th 
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Thus, we see that it is impossible to construct a cyclical machine whose sole effect is to transfer 
energy continously by heat from a cooler object to another warmer object without the input of 
energy (for example electricity) or work. 
 
Note: An important aspect of all heat transfer is that huge numbers of molecules are involved. In 
order to be able to talk about temperature these molecules must be in thermal equilibrium. 
Remembering Maxwell’s distribution curves, we see that all of these processes are of a statistical 
nature. 
 
Problem: A certain refrigerator runs at 0.50 kW and has a COP of 5.00. 3.0 liters of water at 20 
degree Celsius are placed into the freezing department. How long does it take until the water has 
obtained a temperature of 10 degree Celsius below freezing? 
The amount of heat extracted from the water is the heat to lower the water temperature to 
freezing, then the latent heat of melting, and then the energy to lower the temperature of ice from 
0 to -10 degree Celsius. The heat capacity of water is 1.0 cal/gC. The latent heat of melting is 80 
cal. The heat capacity of ice is 0.50 cal/gC. Therefore the total heat that must be extracted is: 

63000 (1.00 20 80 0.50 10 ) 315 315 4.186 1.32 10c
cal cal calQ g C C kCal kJ J
gC g gC

= ⋅ ° + + ° = = ⋅ = ⋅
° °

 

The refrigerator runs at 500 Watts.  
cQenergyPower

time t
= =

∆
 

Therefore: cQt
P

∆ = =2640 seconds=44 minutes. What is wrong with this? 

The power rating refers to the energy input into the fridge not to the heat extracted. We must use 
COP=Qc/W, or W=Qc/5. The time required is therefore 44/5 minutes =8.8 minutes. 
 
22.3 Reversible and Irreversible Processes. Probability and Entropy. 
If you would look at a film showing two containers connected by a membrane, in which the gas 

would flow in such a way that it collects in one 
container and leaves the other empty, you would 
immediately know that the film is running 
backwards. Processes which, if left to 
themselves can only unfold in one direction, are 
called irreversible.   
If there are only two gas molecules we know 
that it is possible that both molecules are in one 
and the same container. We just know that this 
is less likely, less probable. The more molecules 
we have, the less probable it is that all 
molecules assemble in one container.  

 
If we call any situation in which we have certain amounts  of molecules in both containers a 
state, we can say: A state in which we have an  approximately equal number of molecules in 
each container is more likely than a state in which there are many more molecules in one 
container than in the other.  

GAS Vacuum 
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Or, put differently: It is more probable that a state with an uneven distribution of molecules 
unfolds in a direction in which we have an even distribution of molecules, than the other way 
around.  
Or, the “natural” free movement of states is towards states of higher probability. If we 
replace the word probability in this sentence by entropy (S), we have a working definition of this 
important term.  the “natural” free movement of states is towards states of higher entropy S. 
(This is yet another form of the second law of thermodynamics. )  
All macroscopic processes are  irreversible, they occur in the direction of higher probability 
(entropy) of states. 0S∆ >  Reversible processes are characterised by no change in their entropy.

0S∆ =  The entropy increases in all irreversible processes ( 0S∆ > ). 
 
22.4 The Carnot engine (see figure) is a (theoretical) cyclical series of reversible processes, 
which allow us to calculate the absolute highest “theoretical” efficiency of a heat engine.  
“Theoretical” here means an idealized situation which can never be achieved in reality. Another 
statement for the second  law would be that a Carnot engine efficiency is impossible to achieve 
with a real engine. Carnot chose this particular cycle because we can calculate the work and heat 
exchange during each portion of the cycle. Each step of this cycle can be rendered infinitesimal, 
quasistatic.We know the laws for heat exchange in adiabatic and in isothermal processes.  

(22.9) 

1adiabatic: constant or constant

isothermal: W= ln i

f

PV TV
VnRT
V

γ γ −= =
 

For the efficiency we have from (22.4) 
 

(22.10)                                                           1 c

h

Q
e

Q
= −  

For the whole cycle we have ΔU=0 and 
according the second law: eng h cW Q Q= −  
For the adiabatic branches we have 

3
2

U nR T∆ = ∆ where we remember that the 

internal energy change is completely 
calculated through the temperature change. 
The work done on the system is equal to 
negative the work done by the engine, which is 
the difference between the absolute values of 
Qh and Qc. 
 
Note that the adiabatic lines (PVγ =constant) in 
a PV diagram always intersect the isothermal 
lines (PV=constant). Adiabatic lines are 

steeper than isothermal lines. 
For the adiabatic expansion from B to C, the work is equal to the change in internal energy, 
which is proportional to ΔT.  

V 
 

P 
 

T2 isothermal expansion 
from A to B. Qh enters the 
system. 
 

1T  
 

T1 isothermal compression from C to 
D. Qc leaves the system. 
 

B 
 

C 
 

D 
 B to C 

adiabatic 
  

D to A 
adiabatic 
compression.  

A 
 

2T

 
 

Carnot Engine.: 
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(22.11)
( )3

2BC C h BCU nR T T Q∆ = − =

( )

0

3
2

BC

DA h c DA

W

U nR T T Q

+ <

∆ = − = 0DAW+ >
 

The equal and opposite amount of work is done on the branch with adiabatic contraction from D 
to A, between the same initial and final temperatures. The total work on the adiabatic lines is 
therefore 0. We need only to consider the work done along  the isothermal branches. This is 
consistent with our definition (22.2) for the work in a cyclical process in which the gas does 
work. 

0 ;h c engU Q Q W∆ = = − −  
 
A to B: Isothermal expansion, ΔU=0 because ΔT=0; heat Qh enters the system (Qh >0).The gas 
expands, raises the piston,  and thus, does work. We can calculate Qh because it is equal to  the 
work done during that process W. 
We need to make sure that both Qh and Qc are positive quantities. 

(22.12)
2

2 2

0

( ) 1 ln 0

AB h AB

B B
B

h AB
AA A

U Q W

nRT VQ W T PdV dV nRT
V V

∆ = = −

= = − = = >∫ ∫
 

C to D: At this lower isothermal branch heat Qc leaves the system (Qc <0)at the lower 
temperature T1. The gas is being compressed , work is done on it. 
 

(22.13) 1
1 1

1

0

( ) ln 0

ln 0

CD c CD

D D
D

c
CC C

C
c

D

U Q W

nRT VQ W T PdV nRT
V V

VQ nRT
V

∆ = = −

= = = = <

= >

∫ ∫  

(22.14) 
1

2

ln
1 1

ln

C

c D

Bh

A

VnRT
Q Ve VQ nRT

V

= − = −  

 
We need to get rid of the ln expressions. We have formulas to relate the volume endpoints to the 
higher and lower temperatures because of the adiabatic formulas: 
For the adiabatic expansion between B to C, from temperatures T2 to T1 (Th to Tc) we get  
 
(22.15) 1 1

2 1B CT V TVγ γ− −=  
 
For the adiabatic expansion between  A and D, from temperatures T2 to T1  we get: 
(22.16) 1 1

2 1A DT V TVγ γ− −=  
Dividing equation (22.15) by (22.16) we get: 
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(22.17) 

11
12

1 1
2 1

CB

A D

TVT V
T V TV

γγ

γ γ

−−

− −=  

 

(22.18) CB

A D

VV
V V

=  

This means for the efficiency: 

(22.19) 
1

1

2
2

ln
1 1 1

ln

C

c D

Bh

A

VnRT
Q V Te VQ TnRT

V

= − = − = −  

 
This is a quantitative statement of the second law of thermodynamics. It is the highest efficiency 
of a heat engine because it is calculated for a reversible (quasi static) process. 
 

(22.20)   
1

2

The highest possible efficiency in a heat engine 
is the Carnot efficiency

                                1 Te
T

= −
 

 
22.4a Problem: A Carnot engine runs between a high temperature of 500°C and a low 
temperature of 50°C. The isothermal expansion (upper branch) occurs between a volume of 
0.500 liters and 1.00 liters. The isothermal contraction (lower branch) occurs between 2.00 l and 
1.00 l. There are 2 mols of a gas involved. Calculate the work done by the engine, the heat 
taken in Qh, and the heat ejected Qc. Calculate the efficiency of the cyle.  
Draw a PV diagram and show the area corresponding to the total work being done. Show the 
beginning and end points of the isothermal and adiabatic curves. Show during which branch of 
the cycle heat enters and leaves the engine. (Note that we defined work W as the work done on 
the system. In your calculations here you will find  negative work for the path from A to B to C 
to D. The negative of this value is the work done by the engine.) 

5.19 , 8.91 ; 3.72 ; 0.582h cW kJ Q kJ Q kJ e= = = =  
0

ln 2 2 8.314 773 0.693 8.91
h c

h

U Q Q Q W
Q nRT kJ
∆ = ⇒ = − = −

= = ⋅ ⋅ ⋅ =
 

5.19hW Q e kJ= ⋅ =   
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22.4b In a gasoline engine (Otto engine) the compressed air-gasoline mixture is ignited through 
spark plugs. In a Diesel engine the mixture gets compressed to such a pressure that the gasoline-
air mixture ignites by itself. In both cases the pistons cycle between the same compressed and 
decompressed volumes of air. In comparison to the Carnot cycle that means that the volumes VB 
and VC are the same, V2; so are the volumes VA and VD , V1. Also, The adiabatic processes occur 
between A and B, as well as C and D. (There are 4 different temperatures at the intersecting 
points. The isotherms are located below the adiabatic curves.) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(22.21) 1 ;c
eng h c

h

Qe W Q Q
Q

= − = −  

 
 
We can calculate Q by noting that on the respective branches vertical W=0 and therefore  
(22.22) ( ) 0BC C V B CU Q nC T T∆ = = − >  
  
And  
(22.23) ( ) 0DA h V A DU Q nC T T∆ = = − >  
 
Note that we have four different temperatures at the intersection points.  
Furthermore we know that on the adiabatic branches we have: 
(22.24) 1 1

1 2A BT V T Vγ γ− −=  
And  
(22.25) 1 1

1 2D CT V T Vγ γ− −=

 
 

(22.26) ( ) ( ) ( )
( )

11
1 1 1 1

1 2 1
2 2

B C
A D B C

A D

T T V VT T V T T V
T T V V

γγ
γ γ

γ

−−
− −

−

−  
− = − ⇒ = =  −  

 

Adiabatic expansion from V1 to V2. Power stroke, 
volume expansion, temperature drops from TA to TB. 
Work: the gas pushes the piston downward 

Qc leaves the engine as exhaust 
valve is opened. Pressure drops for 
short period of time. 

Adiabatic  compression   
from V2 to V1 

 

Qh enters the engine. 
Spark+combustion. 
No stroke. 

V2 V1 

A 

B 

D 

C 
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(22.27) 
1

1
1

2 2

1

11 1 1 1c B C

h A D

Q T T Ve
Q T T V V

V

γ

γ

−

−

 −
= − = − = − = − −   

 
 

  

Therefore we get the efficiency of an Otto engine in terms of the compression ratio, the ratio 

between the higher volume and the lower volume: 2

1

1V
V

> . 

Note that the smaller volume is V1 and the larger volume is V2. We express the efficiency of 
such an engine directly by the compression ratio: 
 

(22.28) 
1

1
1

2 2

1

11 1 1 1 CB

A D

TV Te
V T TV

V

γ

γ

−

−

 
= − = − = − = − 

  
 
   

 
This compression ratio is much higher in a Diesel engine than in an Otto engine. 
Example: The pressure in a Diesel engine varies from 1 to 20 atmospheres during the adiabatic compression. Find 
the efficiency of the engine. To get the compression ratio we use the adiabatic equations between the vertical 
branches: 

(22.29) 

1 1
1.4

2 2
1 2

1 1

20 8.50
1

A A
A B

B B

P V V PP V P V
P V V P

γ γ
γ γ

γ

   = ⇒ = ⇒ = = =   
  

 

The compression ratio is 8.5, therefore we get the efficiency from (22.28) 

(22.30) 1 0.4

2

1

1 11 1 57.5%
8.5

e
V
V

γ −= − = − =
 
 
 

 

 
  
22.5 Entropy. 
As we mentioned before, systems left to themselves (isolated systems) tend to evolve in a 
direction of greater disorder. Entropy S, is a measure of this disorder. All macroscopic processes 
occur in such ways that the total net entropy of all systems interacting with each other 
increases. This process goes hand in hand with the notion that natural processes evolve in the 
direction of lowest possible energy. 
The increase in disorder of one system always outweighs the increase in order of another 
system. For example, the organisation of molecules into one particular pattern of a plant, comes 
at the cost of order in its environment. Entropy in the macroscopic universe is simple minded, 
it only increases, somehow like time. All of these macroscopic processes are irreversible. The 
disorganisation can be described in terms of the change in entropy from one state to the other:

ln(number of all possible microstates)BS k∆ =  The entropy can be looked at as an energy that 
cannot be retrieved without creating larger energy losses somewhere else. Thus, the impossibility 
to do work at a 100% efficiency is related to the unavoidable increase in entropy. 
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22.5b Macrostates and Microstates. 
Consider again the free expansion of a gas from a compartment of  volume A to the compartment 
of volume B, both of which are equal in size. If we have four molecules to start with in one 
container, after a while we will most likely have 2 molecules in each compartment. In the 
example of a free adiabatic expansion we considered just two of five possible macro states. We 
have an initial and a final state with 0 particles being in one compartment and four in the other. 
These are the states with lowest probability. The probability of finding two molecules in each 
container is the highest probability of any of these so-called macro-states. It does not matter 
which of the four molecules is in either compartment. All that matters for the definition of the 
macro-state is the number of molecules.  
We can see that there are the following 5 macrostates  possible.  
 
  Here are the macro-states:   
     0 in A and 4 in B 
    1 in A and 3 in B 
    2 in A and 2 in B 
    3 in A and 1 in B 
    4 in A and 0 in B 
 
In macro-states the overall fact of a certain number of molecules in a particular state counts, 
not the composition in terms of individual particles. Such overall situations correspond to the 
macroscopic quantities like pressure, temperature, and volume, and total number of 
particles. (All that matters is how many particles are in a state, not which particular ones of the 
indistinguishable particles.) 
 
The most likely situation (macro-state) corresponds to that with an equal number of molecules in 
each compartment, 2 in A and 2 in B. If we have four molecules to begin with, we figure out in 
how many different ways (micro-states) this macro-state can be achieved. Each such path, 
possibility, where we now label each molecule, counts as a micro state. 
If we distinguish the individual molecules by labeling them each with a number 1 through 4 there 
are 24 =16 different configurations (micro-states)  available. There are 16 different ways in 
which the macrostate “2 molecules in each compartment” can be achieved.  
Each one of the particles can be in one of  2 different containers (A or B) at a time. We can see 
that the most probable macrostate is the one with equal numbers of molecules in each volume. 
We can see from the next figure that the largest number of micro-states corresponds to this 
macro-state. There are many more possible paths (microstates) available to achieve this most 
probable macro-state. 
Entropy change between two states is defined as:  
 
 

   (22.31)
ln(number of micro-states)BS k∆ =

 
 
We define the concept of microstates as the number of paths in which a particular configuration 
of a state can be obtained. In our following example the two different initial and final states are  

a) the state in which four particles are contained in one side of the container and  
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b) the state in which we have an equal number of particles in both containers. 

The law of entropy states that any natural process evolves towards the state of highest 
probability, which is the state in which we have an equal number of particles in each 
state. In our case this is the macrostate C. 
We simply count in how many different ways state b) (any macrostate C) can be reached 
from state a) (Macrostate A or E), given that all particles are identical. This is a purely 
statistical count. 

 
 
We are distributing N particles into two possible chambers. There are 2N ways (microstates, 
micro-paths) to do that. It is therefore  2N times more probable to have the 4 molecules 
distributed equally (2 in each) in both containers (macro-state)  than having all molecules in one 
container. The entropy of this state is higher by  
(22.32)    ln 2 ln 2N

B BS k k N∆ = =  
than the state in which all molecules are in one single box. 
In general, this becomes: 

(22.33) ln(number of micro-states)BS k∆ =  

1 2 
3 4 
 
 

 
 
 
 
 
 
 

1 2 
3  
 
 
 
 
 

 
 4 
 
 
 
 
 
 
 
 

1 2 
  4 
 
 
 
 
 
 
 
 

3 
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1 
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 2 
 3 4 
 
 
 
 
 
 
 
 

1 
2 
  
 
 
 
 
 

1 
3 
   
 
 
 
 
 
 
 
 

1  
  4 
 
 
 
 
 
 
 
 

 2 
 3  
 
 
 
 
 
 
 
 

 3 
  4 
 
 
 
 
 
 
 
 

3 
4 
  
 
 
 
 
 

2 
4 
   
 
 
 
 
 
 
 
 

2  
  3 
 
 
 
 
 
 
 
 

 1 
 4 
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16 (2n)  microstates form 5 macrostates 

Macrostate A 
 

Macrostate B 
 
 

Macrostate C 
 
 
 

Macrostate D 
 
 
 

Macrostate E 
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To distribute n moles of a gas in two chambers we have  
2 AnN microstates . The entropy change is therefore: 
 

(22.34) ln(2 ) ln 2 ln 2AnN
B A BS k nN k nR∆ = = =  

This is the entropy change for a free, adiabatic expansion of n moles of an ideal gas into 2 
equally sized compartments. 
 
This law can also be expressed in terms of the probability to encounter a particular macrostate. In 
our example we have 16 equivalent microstates which correspond to the 5 macro-states of having 
2 particles in each chamber. To encounter any particular one of these 16 microstates in one 
single obervation  has a probability of  2-4=1/16=1/P. If we have 10 particles to distribute we 
have 210=1024 310≈ microstates. For a hundred particles we have 2100=102410 3010≈ The 
probability to find a single particular state occupied in the case of N particles is equal to 2-N. 
 
The entropy is defined in terms of the probability to encounter a microstate 1/P through: 

(22.35) [ ]

1ln ln ln(probability to find a particular macrostate occupied)B B BS k P k P k
JS
K

−= = − = −

=
 

 
P is the probability to form a macrostate through the many microstates. The inverse: 1/P is the 
probability to find such a state occupied. 
 
All we need to remember in this context is that the fact that events evolve in the direction of 
greater probability is the same as saying that the entropy increases. 
 
22.6 Macroscopic Entropy Definition. 
For our purposes another definition of  entropy is more relevant: The entropy change in a 
reversible process is given by: 

(22.36) reversibledQdS
T

=  

 
As natural processes are irreversible, the actual entropy change is larger than the one given by 
equation(22.36). We can calculate a lower limit for the entropy change by substituting 
irreversible processes in nature by reversible processes for which we can define the 
thermodynamic state variables at every point of the path through quasistatic thought-processes. 
 

(22.37) ;
Breversible reversible

AB A

dQ dQdS S
T T

≥ ∆ ≥ ∫  
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The entropy S(P,V,T) is, like the internal energy U, only dependent on the initial and final 
state of a thermodynamic process, which again means that the entropy change for a 
complete cycle is equal to 0.  
 

 

Furthermore we can calculate the entropy change for an irreversible 
process by calculating the change of entropy for a reversible process 
as long as the initial and final states of the irreversible and reversible 
processes are the same.

 

 
Let us calculate the change of entropy for a gas expanding freely, and adiabatically into a 
vacuum, doubling its original volume. As we have seen earlier, this is an irreversible process 
with: 
(22.38) 0; 0; 0; 0Q T W U= ∆ = = ∆ =  
We need to find a series of reversible (quasi-static) processes with the same initial and final 
states as in the free adiabatic expansion. The volume doubles, the temperature remains the same. 
We can achieve the same expansion of a gas by allowing it to do work against a piston (during 
which work is done by the system, or negative work is done on the system) in an isothermal 
quasistatic, reversible process. As entropy change is path-independent, only the initial and final 
values matter, not the path. 

(22.39)  
( ), ,rdQ P V T

dS
T

=  

For an isothermal process the change in internal energy is 0 and we have  

(22.40)  from 
r

nRT nRTdQ dW PdV dV P
V V

= − = = =  

(22.41) ln ln 2
f f

fr
f i

ii i

VdQ nRT dVS S S nR nR
T T V V

∆ = − = = = =∫ ∫
 

The actual entropy change would be greater than this minimal value for a reversible process. 
Note that this result is the same as the one we got through our microscopic approach in (22.34). 
 
22.7  Entropy Change for a Quasi Static Reversible Process of an Ideal Gas. 
Recall that quasi-static means that the system is in thermodynamic equilibrium at all times 
during the process. Any state change of an ideal gas involves the three state variables P, V, T. 
Let us here calculate the entropy change of a gas that expands from an initial volume Vi to a final 
volume Vf while undergoing a temperature change from Ti to Tf. 
The three state variables are always connected by the ideal gas law. PV=nRT. 
For the entropy change ΔS we need to know the heat change Q which is implicitely defined by 
the first law of thermodynamics ΔU=Q+W. For a reversible process we can write this in 
terms of infinitesimal changes: 
 
(22.42) Q dU W dU PdVδ δ= − = +  
This leads to  
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(22.43) Q U WS
T T
∆ ∆ −∆

∆ = =  

 
The internal energy U of an ideal gas depends only on the initial and final temperature and we 
have shown earlier that  
(22.44)     VdU nC dT= .  
The change in work is always given by (No path specified): 

 (22.45)    dVW PdV dW PdV nRT
V

= − ⇒ = − = −
 

This is not necessarily an isothermal process, T can change.
 

Now we can perform the integration, noting that in order to obtain the entropy change we must 
divide the change in heat by the temperature T,  

(22.46) 

;
f

r
r V

i

r
V

QS Q dU W nC dT PdV
T

QnRT dT nR TP dS nC
V T T

δ δ δ

δ

∆ = = − = +

= ⇒ = = +

∫

T
dV
V

 

The infinitesimal change of the entropy is a total derivative, which is why we use dS and not Sδ  
 
 

(22.47) 
   

r
V

Q dT dVdS nC nR
T T V
δ

= = +
 

 
If we integrate this from (i) to (f) we see that we get our result without specifying a path: (In our 
calculation of the entropy change we do not need to specify any path, just the initial and final 
state variables.) 

(22.48) ln ln
f f

i i

T Vf
f fr

V V
i ii T V

T VdQ dT dVS nC nR nC nR
T T V T V

∆ = = + = +∫ ∫ ∫  

 
We confirm that the entropy function depends only on initial and final states, and not on the path 
taken. 
 
As all macroscopic processes of heat exchange are irreversible we need of find equivalent 
processes which are quasi-static and/or reversible. This often boils down to replacing 
macroscopic temperature, pressure, or volume changes by microscopic ones, i.e. we use 
integration over infinitesimal (reversible) steps. 
22.7a Entropy Changes During Phase Changes: 
The entropy change of the melting substance in a melting process is clearly equal to the latent 
heat mL divided by the temperature at which the melting occurs: 

(22.49) melting
melting

mLS
T

∆ =  
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The heat necessary comes from the environment which is at a higher temperature, the net entropy 
change is positive. 
 
22.7b The entropy change during a thermal conduction is equal to the heat loss at Th minus 
the heat-gain at the lower temperature Tc. As the amount of heat Q lost at the higher temperature 
Th is equal to the amount of heat gained at the lower temperature, and as the temperature appears 
in the denominator, the entropy change is always positive: 

(22.50) 1 1 0h c

h c c h

Q QS Q
T T T T

 −
∆ = + = − > 

   
Problem: Calculate the entropy change ocurring during the heat flow through a steel bar of 
length 10cm and cross section 2.0cm2, one end of which is at a temperature of the steam point of 
water, the other at the freezing point of water: 

 

ksteel=79.5W/mK.  

(22.51) 
479.5 2 10 100 0.16

0.1
kAQ T W W
L

−⋅ ⋅
= ∆ = =  

The entropy transfer per second is therefore: 

(22.52) 41 10.16 1.57 10
273 373

WW
K K K

− − = ⋅ 
 

 

 
 
22.7c Entropy Change in Calorimetric Processes: 
When two different substances at different temperatures are in close contact with each other, heat 
will flow from the hotter substance to the cooler substance until a final equilibrium temperature 
is reached. This is clearly an irreversible process. However, we can find an equivalent process in 
which for example the cooler substance is put into contact with a heat reservoir at an 
infinitesimally higher temperature. A small amount of heat will flow from the heat-reservoir to 
the cooler substance in an approximately reversible process. This will be repeated until the 
cooler substance has reached the final temperature. The same process is used to cool down the 
hotter substance by putting it in contact with successive heat-reservoirs of  infinitesimally 
decreasing temperatures. 

(22.53) 
1 1 1

2 2 2

f

First substance at lower temperature: ; ;
Second substance at higher temperature: ; ;
Final, equilibrium temperature: T

m c T
m c T  

(22.54) 

( ) ( )
1 2

1 1 1 2 2 2

heat gained+Q 0 heat lost Q 0

1 1 1 1 1 2 2 2 2 2

1 1 2 2 2 2 2 1 1 1

f f

f f

f f

m c T T m c T T

m c T m c T m c T m c T
m c T m c T m c T m c T

> <

− = −

− = −

+ = +

 

 

(22.55) 2 2 2 1 1 1

1 1 2 2
f

m c T m c TT
m c m c

+
=

+  
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Now we use the integral form of the entropy formula to calculate the entropy change for both 
substances: The first substance gains heat at the lower temperature T1, therefore Q1>0 is positive. 
The second substance gives up heat at the higher temperature T2, therefore Q2<0 is negative. 

(22.56) 
2

1 2 1 2 1

1 2 1 1 2 2 1 1 2 2
f f f f f

f

T T T T T T

T T T T T T

dQ dQ m c m c m c m cS dT dT dT dT
T T T T T T

∆ = + = + = −∫ ∫ ∫ ∫ ∫ ∫  

(22.57) 2
1 1 2 2

1

ln lnf

f

T TS m c m c
T T

∆ = −  

The entropy is obviously always positive in such heat exchanges. 
 
Example: 50 g of aluminum (c=0.215cal/gCº) at 100ºC are immersed into 100g of water at 
20ºCelsius. Find the entropy change for the combination of aluminum plus water. We need to 
equate the heat loss of aluminum with the heat gain of water: 
(22.58) ( ) ( )100 20Al Al f w w fm c T m c T− = −  
      Tf=27.8º  
 
(22.59) dQ mcdT=  
The entropy change for aluminum and requires an integration: 

(22.60) 
300.8

373

300.8ln 50 0.215 0.215 2.31
373

f
Al Alr

Al Al Al
i

m cdQ cal calS dT m c
T T C C

∆ = = = = − ⋅ ⋅ = −
° °∫ ∫  

The same for water: 

(22.61) 
300.8

293

300.8100ln 2.63
293W w w

dT calS m c
T C

∆ = = =
°∫  

 
The total entropy change is 0.313 cal/K. 
 
Problem: 100g of ice at 0˚C are immersed into 200g of water at 60˚C. Calculate the entropy 
change of the mixture after thermodynamic equilibrium has been established. 

100 80 8000iceQ mL cal cal= = ⋅ =  

This heat is extracted from the hot water:
1
,

200 1 8000 40

20

w w

w f

calm c T g T cal T C
gC

T C

⋅ ⋅∆ = ⋅ ∆ = ⇒ ∆ = °
°

= °  

The temperature of the water drops from 60 to 40°C due to the melting of the ice.

 

Now we need to calculate the final temperature of the water mixture: 
( ) ( )100 0 200 20

13.3
f f

f

T T

T C

− = −

= °
 

We could also have calculated this right from the beginning: 
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(22.62) 

( ) ( )0 60

1 1 1100 80 100 200 60 200

13.3

ice icewater w f w f

f f

f

m L m c T mc T

cal cal calcal g T g C g T
gC gC gC

T C

+ − = −

⋅ + ⋅ = ⋅ ° − ⋅
° ° °

= °

 

For the entropy change we get: 

(22.63) 

( )

286.3 286.3

1 1 2 2
273 333

8000 1.00 286.3 1.00 286.3100 ln 200 ln
273 273 333

29.3 4.76 30.2 3.84

iceQ dT dTS m c m c
T T T
cal cal calg g
K gK gK

cal cal
K K

∆ = + + =

= + + =

= + − =

∫ ∫

 

Optional: 

22.8 Thermodynamic Equilibrium: 
A system of physical process is said to be in equilibrium if it does not change in time. The 
equilibrium is stable if a change from its equilibrium position causes the system to revert to its 
previous equilibrium point. It is unstable if any such change causes the system to move further 
away from its equilibrium point. It is indifferent if a change does not influence the equilibrium in 
either way.  
In mechanics, the equilibrium points are given by the extreme points of the potential energy. A 
minimum of the potential energy curve corresponds to a stable equilibrium point. 
The function in thermodynamics which corresponds to the potential energy in mechanics is the 
entropy S, provided that we deal with an isolated system, which does not exchange energy or 
mass with the environment. In this situation, a system is in equilibrium if it is at the point of 
maximum entropy. Any change away from this point will entail processes which tend to 
increase the entropy to the maximum. 
In a system that can exchange energy with the environment, but not mass, we need to also 
consider the entropy change of the environment. We have done this to some extent in a few of 
the previous problems. In the last example (22.63) we could consider ice as the system and the 
water as the environment. Such processes evolve by themselves only if  
(22.64) 0system envS S∆ + ∆ ≥  
We saw that we needed to calculate the sum of entropy changes of the environment and the 
system. 
We are at the equilibrium point if 
(22.65) 0system envS S∆ + ∆ =  
This point was reached in the previous example when the water is at a temperature of 13.3°C, 
where we treated ice and water as one system. As long as the temperature is above or below that 
temperature the system+environment keeps changing until it has reached the thermodynamic 
equilibrium. 
If, in addition to heat exchange ΔQ, work ΔW is involved in the process, we can write for the 
system plus environment: 
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(22.66)  or 0Q U WS U W T S
T T
∆ ∆ −∆

∆ = = ∆ −∆ − ∆ =  

 
If work can only be done by pressure on a piston, we have ΔW=-PΔV, and we get:  
 
(22.67) 0U P V T S∆ + ∆ − ∆ =  
 
 
If we keep the volume constant, like in a chemical process inside a closed flask, we get: 
(22.68) 0U T S∆ − ∆ =  
If, in addition, we maintain a constant temperature,equation (22.67)  becomes: 
(22.69) 

Free energy F
or Helmholtz potential

( ) 0;  and  are constantU TS V T∆ − =


 

Free Energy F (Helmholtz potential): 
 

(22.70) 

Under isothermal and iso volumetric conditions 
the thermodynamic equilibrium is given by the minimum Free Energy F :

; 0 with T and V constant.F U TS F

−

= − ∆ =
 

Note that the term “free” is used when the product TS is subtracted. 
 
For constant pressure and constant temperature, equation (22.67) is equivalent to  
(22.71) 

Free Enthalpie or Gibbs potential

( ) 0 temperature and pressure are constantU PV TS∆ + − =


 

 
Free Enthalpie G (Gibbs potential): 
 

(22.72)

Under isothermal and isobaric conditions (T, P constant)
we obtain thermodynamic equilibrium if the free Enthalpie G is at a minimum, 0:
                                                     G=U+PV-TS

G∆ =  

 
This means for example, that a chemical reaction, with T and P, constant will spantaneously 
occur if its free enthalpie will decrease in the process. Processes like these occur in organisms all 
the time.  
In some processes heat exchange is not possible, but work is. This means that TΔS=ΔQ=0 in 
(22.72). We get the function called Enthalpie H: Δ(U+PV)=0. 
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V1 V2 

P1 

P2 

porous wall 

(22.73)

Under adiabatic-isobaric conditions (T 0, P constant)
we obtain thermodynamic equilibrium if the Enthalpie H is at a minimum, 0:
                                                     H=U+PV
If volume

S
H

∆ =
∆ =

 is maintained constant, we see that enthalpie and internal energy are the same.
We achieve equilibrium if 0,  the internal energy is at a minimum.U∆ =

 

 
In chemical reactions in which the number of moles of the products are variables, we need to 
include those in our formulas. This is left to chemistry. 
Optional: 22.9 Calculating the critical temperature of a  real gas: 
An interesting application of the enthalpie function occurs in the understanding of gas 
liquification. An ideal gas would never liquify! A real gas however can be liquified. In a free 
expansion of a real gas the temperature does change. Its equation of state is given by the van der 
Waals equation mentioned in chapter 19.: 

  (22.74)

( ) ( )
2

2 2

2

,

 is an internal pressure deriving from the attractive force of 

the molecules to each-other: F=PA (pressure times area). The potential
energy U invo

mol
mol

mol

attr

a n aP V b RT P V nb nRT
V V

a
V

   
+ − = + − =   

  

lved in this attraction can be guessed at by:

-- - -

b is the volume occupied by at single finite mole of particles.

attr
aU Fx PAx PV

V
= = = =  

The van der Waals equation can also be written as: 

(22.75) 2

RT aP
V b V

= −
−  

 
Let us study this in an experiment illustrating the Joule-Thomson effect: The gas in the left 
chamber is under the constant pressure P1 and gets slowly pushed into the volume to the right 
which is under the constant pressure P2. The porous wall prevents any turbulence. The whole 

volume of gas to the left gets 
pressed into the right chamber.  
We assume that the pressure in the 
chamber to the right is smaller 
than the pressure in the chamber to 
the left.  
The net work done on the gas is 
therefore: 1 1 2 2PV PV− which is an 

increase in the internal energy of the gas. In real experiments we observe an increase in the 
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temperature for CO2 and air, and a decrease for H2.  
In order to conveniently describe the process we use the enthalpie function which contains the 
additional PV term, H U PV= + . The enthalpie remains constant because  

(22.76) 
1 2

1 1 2 2 2 1

1 1 1 2 2 2

H H

PV PV U U
PV U PV U

− = − ⇒
+ = +

 

 

Let us calculate the enthalpie for a van der Waals gas. The internal energy for one mole of such a 
gas depends on the number of degrees of freedom f: 

(22.77) 
2
fU RT=  

The internal pressure results in a negative work term (work is positive if it is exerted on the 

system!) 2

a aV
V V

− = − which must be added to the internal energy. The additional PV term in the 

enthalpie also contains the 2

a
V

− . Again, we must use the negative term because it corresponds to 

inside pressure. Thus we get the total enthalpie function 

(22.78) 

2 2

modified internal
energy U

2

( ) ;
2

2

P

f a RT a RT aH RT V with P
V V b V V b V

f a RT aH RT V
V V b V

= − + − = −
− −

 = − + − − 

 

 

  
The enthalpie function is a total differential, which is now just a function of V and T. We 
simplify the function factoring out RT: 

(22.79) 2
2
f V aH RT

V b V
 = + − − 

 

The total change in this function must be 0, if H is constant. 

(22.80) 0H HdH dT dV
T V

∂ ∂
= + =
∂ ∂

 

(22.81) 

( ) ( ) ( )2 2 22 2 2

2
2

;
2

1 2 2 21

f V aH RT
V b V

H f VR
T V b

H V a V b V a RTb aRT RT
V V b V V VV b V b V b

 = + − − 
∂  = + ∂ − 

   ∂ − − −
= − + = + = +   

   ∂ − − − −   

 

From (22.80) we solve for dT: 

(22.82) ( ) ( )2 22 2
2 2

22

RTb a Tb aH
V RVV b V bVdT dV dV dVH f Vf VR

T V bV b

−∂ + −
− −∂= − = − =

∂   ++ ∂ −− 
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We approximate V-b by V to get: 

(22.83) 
( )2 2 2

2

2 1 2 2

1 1
2 2 2

Tb a TbR a TbR aV RV RVdT dV dVf V f fRV
V

− − −
≈ = =

 + + + 
 

 

During an expansion of the gas, dV is positive; the denominator is always positive. The 
numerator can be positive or negative according to the value for T. The equation  
(22.84) 2 0TbR a− =  
defines the inversion temperature Ti: 

(22.85) 2
i

aT
Rb

=  

The critical temperature Tc of a real gas is the temperature above which the gas cannot be 
liquified, no matter how large the pressure. That critical temperature is: 

(22.86) 

2

2

2

2

: 304.2
:154.4
:126.1
: 33.3
: 5.3

CO K
O K
N K
H K
He K

 

The critical temperature for a real gas is given by: 

(22.87) 8
27c

aT
Rb

=  

It corresponds to the inflection point in the isotherm of a PV diagram for a real gas. Below are 
three isotherms with increasing temperatures for the isotherms from left to 
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right.

 

(22.88) 
2

2
T=constant T=constant

0P P
V V

 ∂ ∂  = =   ∂ ∂   
 

 

(22.89) 
( ) ( )

( ) ( )

2

2 3

2

3 42

2 0

2 6 0

T

T

RT aP
V b V

P RT a
V VV b

P RT a
VV V b

= −
−

∂ −
= + =

∂ −

∂
= − =

∂ −

 

We obtain the critical temperature by dividing the last two equations into each other: 

(22.90) 

( )

( )

2 3

3 4

2)

2 6)

2 3 2 3
3

RT a
VV b

RT a
VV b

V b V V b
V b V

α

ββ
α

= ⇒
−

= ⇒
−

= ⇒ − = ⇒ =
−

 

Substituting Vc=3b into α gives us the desired relationship: 

V 

P 
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(22.91) 
( )

2

2 3 2 3 3

3
2 2 2 4 8

27 4 27 27 273 c

V b critical volume
RT a RT a a b aT

b b b b R Rbb b

= =

− −
= ⇒ = ⇒ = =

−
 

The inversion temperature and the critical temperature are therefore related: 
(22.92) 6.75i cT T=  
Furthermore, inserting critical volume 3b and critical temperature into 2

RT aP
V b V

= −
−

 

we get the critical pressure below which no phase-change is possible: 

(22.93) 2 2 2 2

8
8 4 327

3 9 27 2 9 27 27c

aR a a a a a aRbP
b b b b b b b b

−
= − = − = =

− ⋅
 

Example: For CO2 we measure a critical temperature of 304.2K and a critical pressure of 72.3 
bar or 72.3E5 Pascals. 

(22.94) 38 27 27 8.314 304.2 8.536 10
27 8 8c c

a RbT a T b b
Rb

⋅
= ⇒ = = ⋅ ⋅ = ⋅  

(22.95) 

3 5 3
2

2 5

6

2

8.536 10 4.4 10
27 27 27 72.3 10

0.37 ;

c
c

a a b mP b b
b P mol

Pa ma
mol

−⋅ ⋅
= ⇒ = = ⇒ =

⋅ ⋅

⋅
=
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   See the file in Excel for this calculation 

   Isothermal lines for 1 mole of carbon-dioxide. 
 The dashed black line corresponds to the isothermal of 31 C, above which carbon dioxide 
cannot be liquified, no matter how high the pressure. The Van der Waals PV graph has an inflection 
point at TC. 

 Below the solid line passing through A, TC, and E, gas and liquid coexist. When we move from right to left 
on the Ta=0C line we reach the point of liquification at A. The pressure increases with decreasing volume 
until the point B. Then the pressure decreases to the point D.It increases again beyond this point. 
                          

   
 

R 8.314 
 

 
a 0.364 

 
 

b 4.27E-05 
 1cm^3 delV 1.00E-06 
 0C Ta 273 
 20Celsius Tb 293 
 31C Tc 304 
 40C Td 313 
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