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21.1 Calculate the Pressure Inside of a Gas Using the Microscopic Approach. 
Assume we have N molecules of a gas inside of a container. We look at the molecules as point 
masses with no extension and no rotation. (This means that if we have two different gases with 
different molar masses, it is only the number of molecules which enters the ideal gas law. The 
total pressure inside of a container is the sum of the individual pressures of the gases.) The 
molecules have momentum and kinetic energy, they move at random velocities, their average 
velocity adds up to 0 in terms of vector addition. What matters is the average of the squared 
velocities. The interaction amongst themselves is negligible. We assume a cubic container of 
side-length L.  

From our study of pressure we know that the 
pressure inside of the gas is the same as the 
pressure on the walls of the container. 
(21.1)

;  A is the area of a container wall. 

F is the change of momentum of a molecule
 while bouncing off of the wall (elastic collision), 
divided by .
Only the component perpendicular to the wall
 matter

FP
A

t

=

∆

s, because the other components
cancel each other. This is already containted 
in the definition of pressure.

 
For an elastic collision momentum and kinetic energy are conserved.  
 , , 2out x in x xp ip p i p i∆ = − − = −

  

  

(21.2) x; 2 vpF p m
t

∆
= ∆ = −
∆





 

Δt is the average time between two bounces off of the same wall. During this time the molecule 
can travel the average distance 2L.  
(Watch out for capital letters: P stands for pressure, p stands for momentum.) 
Therefore:  

(21.3) x
x

2 2v
v

L Lt
t

= ⇒ ∆ =
∆

 

This gives us for the x-component of the average force F


 of a single molecule or atom: 

(21.4) 
2

x x x

x

2 v 2 v v
2

v

m m mF Lt L
− − −

= = =
∆

 

This is the average force of the molecule. The force on the wall FW is equal and opposite to the 
force on the molecule. 

(21.5) 
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To find the average pressure iP on the wall exerted by one individual molecule we need to divide 
by the area of the wall which will give us the volume in the container V in the denominator of 
(21.5). 

(21.6) 
2 2
x xv v

LAi
m mP

V
= =  

 
To get the average of all the molecules squared velocities we have to sum up all x-component 
contributions of all molecules hitting the walls perpendicular to the x direction: 

(21.7) 
2N

2 ix
x

i=1

vv
N

=∑  

This average value is the same for each component x,y,z because of the huge number of 
molecules involved. So, rather than limiting ourselves to the velocities in one direction we take 
1/3 of the average velocities in all three directions. We talk only about three principal directions 
because all velocities can be expressed in terms of the three x,y,z components. These are the 
three degrees of freedom for translational motion. 
(21.8) 2 2 2 2 2

x y z xv v v v 3v= + + =  

(21.9) 
2N

2 2ix
x

i=1

v 1v v
N 3

= =∑  

Therefore we get for the average pressure exerted by all molecules in the container with N 
molecules and volume V: 

(21.10) 
2

2 2

average kinetic average kinetic 
energy of one energy of one 
molecule molecule

average kinetic 
energy of all N 
molecules

1 v 2 1 2 1v ; v
3 3 2 3 2

Nm NP m PV N m
V V

   = = =   
   
 



 

If we compare (21.10) with the ideal gas law PV=NkT we see some interesting facts: 

(21.11) 22 1 v
3 2

PV N m=  

 

(21.12) 2

average kinetic 
energy of the gas 

2 1 v
3 2BPV Nk T N m= =


 

21.1a Equipartition of Energy : 

(21.13) 

2

int 

1 3                             v ;
2 2

For each possible independent direction of movement
the contribution of the average kinetic energy to the 

1total internal energy U or E is 
2

B

B

m k T

k T

=
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We used this fact at the beginning of the class to define temperature. Note that a definition 
of temperature is therefore only possible for a very large number of randomly moving 
particles in thermal equilibrium. Each atom in translational motion contributes an average 

of 
1
2 Bk T to the internal energy of the gas for each translational degree of freedom. The total 

internal energy of such a gas is therefore: 
  

(21.14) int
3For N atoms: 
2 BU E N k T≡ =  

(21.15) 
3For n moles: 
2

U nR T∆ = ∆  

 
 
Note that this result confirms our hypothesis that the internal energy of an ideal gas is 
completely definable by its temperature. 

Each degree of freedom contributes 
1
2 Bk T to the internal energy of a molecule. 

This statement can be generalized to include rotational kinetic energies for independent angles of 
rotation, and kinetic as well as potential energies of oscillation for possible directions of  
oscillations. These independent angles of rotation and possible independent directions of 
oscillations in a molecule together with the three independent directions of translational motion 
are called degrees of freedom.  
 
When we talk about the velocity of a single molecule in a statistical, thermodynamic context we 
always mean the square-root of the average squared velocities or the root-mean-square 
velocity. 

(21.16) 

2 2 2
2ix iy iz N

2 21 ix
rms

i=1

v v v
v1 1 1v v v

3 3 N 3

i N

i

N

=

=

+ +
≡ = = =

∑
∑  

 
We can therefore talk about the rms velocity in this sense, for example the rms speed of an 
oxygen atom at 20°C: 

(21.17) 

rms
3 3 3 8.314 293v 676 /

0.016
 of the individual molecule.

M  mass of one mol of molecules

Bk T RT m s
m M

m mass

⋅ ⋅
= = = =





 

Note : the velocity we get in this way is the velocity between collisions among molecules. It is 
not the drift velocity vd with which one molecule in one corner of a room drifts to another 
corner, in a random motion. We talk about drift velocity and random motion later. 
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3.2 Molar Specific Heat of an Ideal Gas. 
We have earlier defined the specific heat c (small cap c) of a solid substance as the heat energy 
that is required to increase the temperature of the substance by 1 degree Celsius. According to 
the law: 

(21.18) ; QQ cm T c
m T

= ∆ =
∆

 

As most solids are incompressible within the accuracies involved in these calculations, pressure 
and volume did not come into play. This is obviously different for a gas. When we increase the 
temperature of a gas both pressure and volume change dramatically. We therefore define two 
different processes, one at constant pressure, and another at constant volume. The obvious 
amount for which we measure and calculate the specific heat is one mol. We therefore need to 
determine the molar specific heat CP (capital C) of a gas at constant pressure and at constant 
volume CV. 
Recall that we sometimes also use the term heat capacity instead of specific heat. 
 

(21.19) 
 heat transfer for n moles at constant volume
heat transfer for n moles at constant pressure

V V

P P

Q nC T
Q nC T

= ∆
= ∆

 

 
3.2a Heat transfer of a gas at constant volume (iso-volumetric process): 
If the volume is constant, no work is being done. We use the first law of thermodynamics 

U Q W∆ = + and the new formula (21.15) 
3
2

U nR T∆ = ∆  

(21.20) 
30 0
2VV W U Q nC T nR T∆ = ⇒ = ⇒ ∆ = = ∆ = ∆ ⇒  

(21.21) 
3 3 8.314 12.5
2 2V

JC R
mol K

= = ⋅ =
⋅  

For a mono atomic gas the molar specific heat equals 1.5R=12.5 J/molK. This reveals that 
we can also write for the internal energy of an ideal gas with three degrees of freedom: 

(21.22) 
3
2 VU nR T nC T∆ = ∆ = ∆  

 
3.2b Heat transfer of a gas at constant pressure (iso-baric process): 
We use the first law of thermodynamics and the definition of work done on a gas 

(21.23) 



for constant pressure:

P
nR T

P

U Q W C n T P V

PV nRT P V nR T
U C n T nR T

∆

∆ = + = ∆ − ∆

= ⇒ ∆ = ∆
∆ = ∆ − ∆

 

(For non-constant pressure we would get through implicit differentiation of PV=nRT 
 PdV VdP nRdT+ = ) 
 
Note that the internal energy U is the same along any isothermal line. ΔU is the same if we 
move from any starting point passing through Ti to any other isothermal line, like the one passing 
through the endpoint in the isobaric expansion under consideration. If we choose the vertical 
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path for isovolumetric expansion we can use  (21.20); ΔU for a constant volume compression is 

given by 
3
2VU nC T nR T∆ = ∆ = ∆ .  

 
This means that the change in internal energy is 
the same for a process at constant pressure 
(horizontal line) or at constant volume (vertical 
line.) At constant volume we had 

VU Q nC T∆ = = ∆ Therefore from (21.23) we get: 

(21.24) P V

P V

U C n T nR T nC T
C n T nC T nR T
∆ = ∆ − ∆ = ∆ ⇒

∆ − ∆ = ∆
 

and finally  

(21.25)
5 12.5
2P V P

JC C R C R
mol K

− = ⇒ = =


 

(We could also have used the simple fact that 
3
2

U nRT∆ = for any gas with three degrees of 

freedom and we would have gotten the same result, namely that 
5
2PC R= . Generally, the first 

approach is used because it establishes a universal relationship between CP and CV and is 
independent of the number of degrees of freedom of the gas. (The internal energy changes with a 
higher degree of freedom.) 
The ratio of the molar specific heat often comes into play. It is called the adiabatic constant γ . 

(21.26) 
5 1.67
3

P

V

C
C

γ= =  

 
21.3 Adiabatic Processes for an Ideal Gas. (Proof that constantPV γ = for adiabatic processes.) 
 
Adiabatic processes are processes occurring without heat exchange. This does not mean, 
however, that the temperature remains the same. (That would be an isothermal process for which 
dT=0). The change in internal energy during any adiabatic process is given by: 

(21.27) 
For adiabatic processes:

U Q∆ = W dU dW PdV+ ⇒ = = −
 

We know from (21.22) that  

(21.28) 
3
2 VdU nRdT nC dT= =  

Therefore we can equate: 

(21.29) 
V

V

nC dT PdV
PdVndT
C

= −
−

=
 

There are three dependent variables. To solve this we need to use another equation in order to 
eliminate one variable: 

V 
 

P 
 

2 1T T T= + ∆  
 

1T  
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We always have for any ideal gas: 

(21.30)  we get through implicit differentiation:
PV nRT

PdV VdP nRdT

=

+ =
 

 
We use this result to eliminate n∙dT in equation (21.29).  

(21.31) 
V

RPdVPdV VdP
C

−
+ =  

We now have a differential equation in V and P, which we solve by separating the variables: 

(21.32) 

 divide by PV

R1+

V

V

V

RPdVPdV VdP
C

dV dP RdV
V P VC

dV dP
C V P

−
+ =

+ = −

 
= − 

 

 

(21.33) 1 V P

V V V

C R CR
C C C

γ+
+ = = =  

(21.34) 
( )

0 integration ln ln constant

ln constant

dV dP V P
V P
V Pγ

γ γ+ = ⇒ + = ⇒

=
 

 
For all adiabatic processes of ideal gases we therefore get the important result that : 
 

(21.35) 
constant

i i f f

PV
PV P V

γ

γ γ

=

=  

 
By using the ideal gas law we can substitute the pressure in this: 

(21.36) 1nRTP nRTV
V

−= =  

(21.37) 
1 1

i i f fTV T Vγ γ− −=
 

We can also replace V in (21.35) to get: 

(21.38) ( )1 111
1 1

1

inverting the ratio

;fi
i f

i f

f fi i i
i i f f

f i i f f

nRTnRT nRTP P V
P P P

P PT P PP T P T
T P P P P

γγ

γγ γγγ
γ γ γ γ

γ

− − −−−
− −

−

  
= =       

      
= ⇒ = = = =                 
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and finally :  

(21.39) 

1 11

i i i

f f f

T P P
T P P

γ
γ γ
−

−
   

= =      
   

 

 
21.4 The Equipartition of Energy. 
We earlier defined the molar heat capacity through V VC Q nC T= ∆ We now know that the 
internal energy of an ideal gas depends only on the temperature. Therefore, we can write for 
infinitesimal changes in the heat transfer: 

(21.40) 
 or for one mole n=1V

V

dU dQ nC dT
dUC
dT

= =

=  

The internal energy of one mole of an ideal gas is equal to 
1
2

RT for every degree of freedom. 

(Or 
1
2 Bk T for each molecule) In the case of a mono-atomic gas, the atom can move linearly in 

three directions x,y,z and therefore has three degrees of freedom. In the case of a di-atomic 
molecule, we can consider the molecule as a bar-bell with the atoms sitting at the end of the bar. 
The rotational kinetic energy comes from the two rotations around axes perpendicular to the bar, 
thus we have two more degrees of freedom of rotation available.  
Furthermore, there are often situations in which the gas atoms oscillate within their molecular 
structure. Oscillators have two kinds of energy, kinetic and potential, each account for additional 
possible degrees of freedom of oscillation.  
The energies (in a gas) due to oscillation do not kick in unless the gas or other substance is 
heated to a high temperature. The reason for this lies in the fact that the energies in molecules are 
quantized, they do not continuously increase from 0 to higher values. In the case of oscillators, 

for example, the smallest possible energy is 
1
2

ω where ω is the angular frequency of oscillation 

corresponding to the particular molecule. Each excited energy state adds an additional ω . 
Thus, the Nth excited state has an energy of N ω above the ground-state. It is these energies of 
the excited states that contribute to the specific heat of the gas. 
The specific heat of a gas at constant volume is therefore: 

(21.41) 

1; ; degree of freedom=3,5,7
2

2

V f f

f
V

dUC U d RT d
dT
d R

C

 = = ⋅ 
 

⋅
=



 

The definition of the heat capacity at constant pressure is not affected and remains at  

(21.42) P VC C R− =  

What changes is of course P

V

C
C

γ =  And the value of γ can be checked relatively easily in 

experiments with adiabatic processes for which we have equation (21.35) 
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constant

i i f f

PV
PV P V

γ

γ γ

=

=  

For a diatomic gas with 5 degrees of freedom, like for example a hydrogen molecule we get: 

(21.43) 5 7 7; ; 1.40
2 2 5

P
V P V

V

CC R C C R R
C

γ= = + = = = =  

memorize: 

(21.44) 

7 5 71.40 for diatomic gases ;
5 2 2
5 3 5             = 1.67 for monoatomic gases: ;
3 2 2

P
V P

V

V P

C C R C R
C

C R C R

γ = = = = =

= = =
 

 
Problem: The inverse of the bulkmodulus B is called compressibility : 

(21.45) 
1 1V V dVP B

V dP dV V dP
κ κ∆

∆ = − ⇒ = − ⇒ = −  

a) Show that if an ideal gas is compressed isothermally, its compressibility is given by 
1 1;iso iso

iso

B P
P

κ
κ

= = = .  

Well, for an ideal gas we have . 0 dV VPV nRT const PdV VdP
dP P

= = ⇒ + = ⇒ = −  

For an adiabatic compression we also have to differentiate 
1 10

1 1 ;adiab adiab

dV VPV const V dP PV dV
dP P

dV B P
V dP P

γ γ γγ
γ

κ γ
γ

−= ⇒ + = ⇒ = −

− = = =
 

 
Thus we obtain for the coefficient of adiabatic compression or the adiabatic bulk modulus: 

(21.46) 1 1 ;adiab adiab
adiab

B P
P B

κ γ
γ

= = =  

The speed of an adiabatic sound wave in a liquid is given by: 

(21.47) sv B Pγ
ρ ρ

= =  

If we treat air as an ideal gas, we can express its density in terms of the ideal gas law: 

(21.48) ; ;
m m m

m m RT RTPV nRT RT P
M V M M

ρ= = = =  

(21.49) ;  with = mass of the gas, m
m

PM m M molar mass
RT

ρ = =  

Inserting this density into the formula for speed of sound (21.47) we get  

(21.50) sv
m

RT
M
γ

=  

Air consists of 79% nitrogen and 21% oxygen molecules. The molar mass of air is therefore: 
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(21.51) ( )0.79 28 0.21 32 29airM grams grams= ⋅ + ⋅ =  
We write the temperature in terms of 273Kelvin +x Kelvin, or 

(21.52) 273 1
273
CelsiusTT Kelvin = + 

 
 

(21.53) s
273v 1 331 1

273 273
Celsius Celsius

m m

T TRT R m
M M s
γ γ

= = ⋅ + = +  

 
21.5 The Molar Specific Heat of Solids. 
It is an expermental observation that the molar specific heat of solids approaches the value of 3R, 
asymptotically with increasing temperature T. The value is approximately 25 J/mol·K. (Law by 
DuLong-Petit.) 
This can be easily explained by the equipartition law. The atoms and molecules in a solid are not 
free to rotate or move linearly. What they can do however is oscillate in their cristal lattices. 
Each atom or molecule has a kinetic and potential energy associated with it for each of the three 
independent directions of oscillation, x, y, z. (6 degrees of freedom for oscillation). 

(21.54) ( )


( )2 2 2 2 2 2
x y z

spring
constant

1 1v v v
2 2

E m k x y z= + + + + +  

Therefore the total heat capacity at constant volume is 6 3
2 2

f
V

d
C R R R= = =  

This implies that atoms in a solid behave essentially as three-dimensional oscillators. 
Let us calculate the specific heat of copper by using the result above. Its molar mass is 63.5 g/mol. The molar 
specific heat is 3R= 3 8.314 24.9 /J mol K⋅ = ⋅ . If we divide this by the mass per mole we get the specific heat 
per gram and Kelvin or 0.393 J/(g K) = 0.393kJ/(kg K)= 0.0938 cal/(g K). 
The tabulated measured specific heat for copper is 0.0923 cal/gK. 
With few exception, all solid metals have molar heat capacities around 25 J/molK. 
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21.6 The Boltzmann Distribution Law. 
At the end of ch19 temperature ideal gas law.doc we derived a formula for the pressure change in 
the atmosphere with increasing height at constant temperature 

(21.55)    0 0

molecule mol
B

M g My yk T RTP P e P e
− −

= =  
By means of the ideal gas law we can convert pressure into number of molecules per unit volume 

or number-density n. 0 0 0 0 0
0

0 0

 and B B B

B B B

NPV Nk T P k T nk T
V

NPV Nk T P k T n k T
V

P n
P n

= ⇒ = =

= ⇒ = = ⇒

=

 

 The law (21.55) turns into a law showing how the number of molecules changes with increasing 
height, or with increasing potential energy mgy. This number declines exponentially with height. 

(21.56) 0 0, where  is the number density for y=0B

mgy
k T

Vn n e n
−

=  
(Note, the above law is counter-acted by diffusion which is another physical phenomenon 
describing the random tendency of all molecules to occupy the largest possible volume. As 
the density of air decreases exponentially diffusion increases. We used the concept of diffusion 
when discussing the free adiabatic expansion of a gas.) 
 
This law is merely a particular case of the much more general Boltzmann distribution law. 
 

(21.57) 0( ) B

E
k T

Vn E n e
−

=  
The function which is a form of a larger class of functions, called probability distribution 
functions, states that the probability of finding the molecules in a particular energy state (per 
unit volume) decreases exponentially with the energy of the molecule divided by Bk T . 
Multiplying (21.57) by the differential dE we get the number of molecules per unit volume with 
energies between E and E+dE: 

(21.58) 0
B

E
k T

Vn dE n e dE
−

=  
  
Sometimes it is more convenient to divide equation (21.58) by the total number of molecules N 
to obtain a formula normalized to unity. We then get a formula giving us the probability, a 
number between 0 and 1, to find the molecules in an energy interval between E and E+dE. 

(21.59) 0 B

E
k TVn dE n e dE

N N

−

=  

This is all reminiscent of the Gaussian normal distribution function : 

(21.60) 
21

21( )
2

x

Gf x e
µ

σ

σ π

− −  
 =  
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By using the probability distributions such as (21.59) we can find the average value ( )f E of 
any other physical quantity f(E) which is a function  of the energy.  
 

(21.61) 

0

0

                                    ( ) ( )

1 is the normalization constant:A=

The probability to find a particle in any energy state between
0 and  is equal to 1. 100% probabi

B

B

E
k T

E
k T

f E A f E e dE

A
e dE

∞ −

∞ −

=

∞

∫

∫

lity = certainty.

 

 
Example :Consider a gas at a temperature of 2.5E3 Kelvin, whose atoms occupy only two energy 
levels separated by 1.5 eV. Calculate the ratio of atoms occupying the two energy levels. 
 

(21.62) 

2
2 1

1

1.5
0

0

B
B B

B

E
E E eVk T

k T k T
E

k T

n er e e
n e

− −
− −

−
= = =  

Let us calculate Boltzmann’s constant in terms of eV: 

(21.63) 
23

23 5

19

1.38 10 /1.38 10 / 8.63 10
1.6 10

B
J K eVk J K J K
eV

−
− −

−

×
= ⋅ = = ×

×
 

  
(21.64) 6.95 49.6 10 0.1%r e− −= = × ≈  
 
 
The potential energy or the energy levels in atoms are some areas where we can use Boltzmann’s 
law. But, in the context of theromodynamics the kinetic energy of molecules is much more 

interesting. We can calculate the rms speed of atoms and molecules, using 21 3v
2 2 Bm k T= But at 

a given temperature what would be the percentage of  molecules having this speed more or less. 
To answer such questions we have to reformulate Boltzmann’s law in terms of the velocities of 
molecules and their kinetic energies. 
 
In the Boltzmann distribution function we we need to replace the energy by the kinetic energy:  

(21.65) 
2v

2
0( ) B

m
k T

Vn K n e
−

=  
The kinetic energy has contributions from all three degrees of freedom: 

(21.66) ( )2 2 2 2
x y z

1 1v v v v
2 2

m m= + +  
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The velocities in the various directions are not very instructive. We need to find the velocity 
distribution in terms of the radial velocity. Compare this situation to polar coordinates. There, we 
can find the values for dr in a spherical shell of thickness dr. In other words, the infinitesimal 
volume element dV in spherical coordinates is given by: 
(21.67) 24 r drπ  
We use the same concept in velocity space, whose Cartesian coordinates are x y zv , v , v . The 
infinitesimal volume element in velocity space, becomes: 
(21.68) 2

x y zv v v 4 v vd d d dπ⋅ ⋅ =  
 
Therefore, the probability to find a molecule in the spherical velocity shell  between the 
velocities v and v+dv is given by.  

(21.69) 

2v
2 2(v) v 4 v vB

m
k Tf d Ae dπ

−

=   
 
To determine the constant A we need to follow the procedure given in (21.61). So, we need to 
calculate the integral:  

(21.70) 
2v

2 2

0 0

1(v)dv=1 4 v vB

m
k Tf e d

A
π

∞ ∞ −

⇒ =∫ ∫  

21.6a Gaussian Integrals. 
To evaluate this and other similar integrals a few formulas are useful: 

(21.71) 
2

0
0

1
2

xI e dxα π
α

+∞
−= =∫  

Proof: 

(21.72) 

( )

2 2

2 22 2

2

0 0

2

22 2 2 2

0 0

1 1                
2 2

(using polar coordinates)

 with x

: . The integration over the angle

x x

x yx y

r

I e dx e dx I

I e dx e dy e dxdy

I e rdrd y r

and dx dy rdrd

α α

αα α

π α θ

θ

∞ ∞− −

−∞

∞ ∞
∞ ∞ − +− −

−∞ −∞
−∞ −∞

∞ −

= = =

= = =

= + =

⋅ =

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

( ) ( )

2

0

2

0
2

2

00

2 2
0

 gives us 2

2  = and we use yet another common variable transformation: 

;  dz=2 rdr 

I 0 1                 

14
2

r

z z

I e rdr

r z

e dz e

I I I

α

π

π

α α
π π π π
α α α α

π π
α α

∞ −

∞ ∞− −

=

=

= = − = − + =

= = ⇒ =

∫

∫

 

 
I1 can be easily integrated: 
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(21.73) 
2

1
0

1
2

xI xe dxα

α

+∞
−= =∫

 
We can show that the subsequent integrals In, with n=2, 3,… can be easily calculated by 
differentiation under the integral sign according to : 

(21.74) [ ]( , ) ( , )
b b

a a

d f x dx f x dx
d

α α
α α

∂
=

∂∫ ∫  

 
We get for the Gaussian integrals : 

(21.75) 2n
n

dII
dα

−= −  

(21.76) 
22 0

2 3
0

1
4

x dII x e dx
d

α π
α α

+∞
−= = − =∫  

(21.77) 
23 1

3 2
0

1
2

x dII x e dx
d

α

α α

+∞
−= = − =∫  

(21.78) 
2

2
4 0

4 2 5
0

3
8

x d II x e dx
d

α π
α α

+∞
−= = =∫  

Using   (21.76) in (21.70)we get for the normalization constant A : 

(21.79) 

3 3 3

3 3

3
2

1 1 14 4
4 4

2 2B B

A A
A

m mA
k T k T

π α α απ
π α π π π π

α
π

= ⇒ = ⇒ = =

 
= ⇒ =  

 

 

 
With this constant the probability distribution becomes the Maxwell distribution formula (note 
the extra 4π from the spherical volume element 24 v vdπ ); 

 (21.80)

2 2v v
2 22 2

3
2

(v) v 4 v v=A' v v

A'=4 4
2

B B

m m
k T k T

B

f d Ae d e d

mA
k T

π

π π
π

− −

=

 
=  

 
 It is sometimes useful to work with the Maxwell distribution formula in terms of the kinetic 

energy E, rather than speed: We get: 

(21.81) ( )
3
2

2( ) B

E
k T

Bf E dE k T Ee dE
π

−−=  

21.6b The Maxwell distribution: 
Note the v2 term which is responsible for the Maxwell tail, i.e. the fact that the Maxwell 
distribution function goes to 0 much more slowly than a pure Gaussian function. Also note that 
the maximum of the function decreases with higher temperatures (the exponent increases), the 
whole function becomes more flat and the peak moves to the right. 
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For N particles, we just multiply the formula by N and obtain the number of particles Nv with 
velocities between v and v+dv. 
For the most probable speed mpv we take the derivative of f(v) with respect to v and, setting it 
equal to 0, we find:  

(21.82) mp
2v 1.4 1.4kT kT RT
m m M

= = =  

We find the average velocity according to the formula (21.61) 

  (21.83)
2v

2 2
3 2

0 0

1v= (v)v v 4 v v v=4 4
2

B

m
k Tf d A e d AI Aπ π π

α

∞ ∞ −

= =∫ ∫  

We evaluate this integral by using formula (21.77):   
We get  

(21.84) ( )
3

12
2

2

2 81v=4 2 2 1.6
2

B B Bk T k T k T
m m m

απ απ
π α π π

−  = = = = 
 

 

The rms speed is obtained from  

(21.85) 
2

rms
31 3v v 1.73

2 2
B B

B
k T k Tm k T
m m

= ⇒ = =
 

This is the same result we get by using : 
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(21.86) 

2

1

3v 5 1222 2 2 2 2
4

0
3 11 02 2

3v A' v v v 4 4
8

3 2 33 3
2 2 2

B

m
k T

B B

e d AI

k T k T
m m

απ π α π
π

α π π
α

−

+∞ − −

− +

 = ⋅ = = = 
 

⋅
= = =

∫
 

 
------------------------------------------------------------------------------------------------------------ 
21.6c Estimating temperatures for chemical and nuclear reactions : 
a) Using the Equipartition of energy to calculate the temperature necessary to permit a atomic or nuclear 
process. 

 
We find in the kinematic theory of atoms that for every degree of freedom in the motion of a particle an average 
energy of kT/2 is required. kb is the Boltzmann constant with a value of: 1.380650x10-23 J/Kelvin 

( )2 2 2 -231 3  for three degrees of freedom x,y,z k=1.38 10
2 2x y z

Jm v v v kT
K

+ + = ×
°

 

 
Hydrogen Atom : This relationship between energy and temperature is often a good way to estimate the 
temperature involved in maintaining or creating the particular energy form. For example, the groundstate energy of a 
hydrogen atom is  
-13.6 eV. Therefore, to break up a hydrogen atom, or to put it together, a temperature is required in the 
neighborhood  of  

19
4

23 1

13.6 13.6 1.6 1013.6 9.86 10
1.38 10

eV JeV kT T K
k JK

−

− −

× ×
≈ ⇒ ≈ = = ×

×
So, we can expect that at temperatures around 105 

Kelvin hydrogen atoms can be formed out of electrons and protons.
  

: 
The space shuttle uses the energy of hydrogen gas being burnt with oxygen to deliver its propulsion : 
(21.87) 2 2 22 2 (286 / )H O H O energy kJ mole+ → +  
The speed of the ejected water molecules is given by  

(21.88) 0
3v =

mol

RT
M

 

This means that the hotter the gas in the combustion chamber and the lighter the gas, the faster the ejected gas will 
be. The endspeed v of a rocket is given by :

( )

Seen from the reference system of the rocket, the initial momentum is 0.

-v v v v integrating gives

v ln v v inverting the fraction takes care of the minus sign:

v ln

eject eject

f
eject f i

i

i
eject

dmdm md d
m

m
m
m
m

= ⇒ = −

= − − ⇒

v vf i
f

= −

 

(21.89) v v +v ln v ln 6i
f i eject eject

f

m
m

− = ≈  

The maximum amount of fuel is about 6 times the mass of the empty rocket. We see that the speed is limited by the 
available temperatures for the combustion chamber. (It should not melt !) 
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If we assume 2000K we get a speed of only 1.7km/s for the increase of veject and therefore roughly 1.7∙2km/s for the 
final speed of the rocket. We need three times that speed just to put a rocket into orbit. Hence the reason for several 
stages of a rocket. 
 
Nuclear Fusion in the Sun : 
The exterior of the sun has an approximate temperature of 6000 K, the interior of 107K. 
A hydrogen nucleus with 1 proton and 1 neutron is called a deuteron, a hydrogen nucleus with 1 proton and 2 
neutrons is called a triton. They are isotopes which are being created during the fusion process of four hydrogen 
atom nuclei to one helium nucleus. A summary of these processes can be written as follows : 

2 3 4

Nuclear fusion inside of the sun:

17.6
deuteron + triton  Helium4 + a neutron + 17.6 MeV
H H He n MeV+ → + +

→  

Following the reasoning above this would require a median thermal energy corresponding to temperatures of 
approximatly 1 million times the energy required in the formation of an H atom, namely about 1011K. This 
temperature does not exist even in the interior of the sun with a temperature around 10 million K. However, because 
of the Maxwell distribution of speeds there will be some particles available which can tunnel through the Coulomb 
wall. (p 827 Gerthsen)  
This gamma radiation consists of photons, which travel to the surface of the sun, all the while losing energy to the 
point where the photons are mostly of an energy corresponding to the sun-light spectrum. The random motion is 
caused by collisions with proton-sized nuclei. As the photons decrease in energy they increase in wavelength, thus 
causing more collisions. 
 
------------------------------------------------------------------------------------------------------------ 
 
21.7 Mean Free Path. 
The mean free path of particles is the average distance λ of any particle between collisions. If 
two particles of spherical shape approach each other to within the distance of their combined 
radius they will collide. If we assume that they have the same radius, that distance is d=2r. The 
same result is obtained if we assume that one of the particles has a radius of 2r and the other is a 
dimensionless point. The target area is that of a circle with area πd2=4πr2.  
 
The number of collisions in the time Δt is equal to the number of such particles per unit 
volume nV=N/V (particle density) times the volume of a cylinder with the above target area as 
base and length v·Δt. 
We proceed as follows: 

• Find the number of collisions in the time Δt, which is the number of particles contained in 
a cylinder of base πd2 muliplied by the average length travelled by a molecule in the time 
Δt, which is vΔt. The velocity can be vrms, vmp, or v . This volume multiplied by the 
number density nv gives us an estimate for the number of collisions ncoll in the time Δt. 

• Dividing by Δt gives us the mean frequency for collisions: f= ncoll/Δt 
• The inverse of frequency is the time between collisions (mean free time) τ. 
• The mean free length λ is given by v·τ 
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(21.90) 
2

collnumber of collisions is n  = vVd n tπ ∆  
 
The number of collisions per time interval Δt is the frequency at which collisions occur fcoll: 
 

(21.91) 
2

2v
v

vnumber of collisions = v
unit timecoll

d n tf d n
t

π π∆
= =

∆
 

 
Think of the mean free path as the wavelength, then we have v=f λ⋅  
 
The inverse of frequency is period Tcoll =τ, which is the mean free time: 

(21.92) 

2
v

coll 2

vnumber of collisions =
unit time

1 1mean free time =T =
v

coll

coll V

d n tf
t

f d n

π

τ
π

∆
= =

∆

= =
 

 
A particle travels an average distance of v τ⋅ . Its mean free path l is the distance between 
collisions, therefore: 

(21.93) 1
2

1mean free path v (target area number density)
Vd n

λ τ
π

−= ⋅ = = ×  

 
In a more quantitatively accurate calculation we must include the fact that particles in the 
considered volume are not stationary. This analysis leads to an additional 2 factor in front of 
the π. Everything else remains correct. Thus we have as our final results: 

(21.94) 

2

V

2

average distance 1mean free path 
number of collisions 2

2  of target cylinder; n number-density

number of collisions= 2 v

V

V

d n
Nd r diameter
V

d n t

λ
π

π

= =

= = = =

∆
 

v t∆  

2r=d 

r 
 

V
Nn

Volume
=  

 
 



2

target volume number density

d v number of collisions 

of particles with v in the time 

Vt n

t

π ⋅ ∆ ⋅ =

∆ ⋅
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Example: Find the mean free path and time for atoms at standard conditions: 
Let us assume the diameter of an atom to be 5∙10E-10 m. At atmospheric pressure and room 
temperature we get  

(21.95) 
( )v

5
25 3

from PV=N

10 2.5 10 atoms per m

B
B

V
B

Pn k T
k T

n
k T

=

= = ⋅ =
 

 
We get therefore a mean free path of 3.6E-8 m. 100 atomic diameters. 
 
For the mean collision frequency and mean free time (period) we get similarly the corrected 
values : 

(21.96) 

2

coll 2

number of collisions = 2 v
unit time

1 1mean free time =T =
2 v

coll V

coll V

f d n

f d n

π

τ
π

=

= =
 

 
Obviously,  

(21.97) 

2 /d v

v=

2 volume of target-cylinder density of particles
Vn N V

f

f
π

λλ
τ

=

⋅ =

= ⋅ ⋅
 

 

 
Problem : In deep space we have roughly three particles per m3. Assume that we are dealing with hydrogen atoms of 
diameter 0.1 nm. We have an average temperature of 3K. What is the mean free path of a particle, and what is the 
time interval between collisions? 

(21.98) ( ) ( )1 12 20 15
v2 1.4 3 10 3 7.9 10

(about 1 million times the distance between Pluto and the sun.)

d n kmλ π
− −−= = ⋅ ⋅ ⋅ = ⋅  

If we take the rms speed as our average speed, we get  

(21.99) rms
3 3 1.38 23 3v 270

1.67 27
kT E m
m E s

⋅ − ⋅
= = =

−
 

(21.100) 
7.9 18v= 2.9 16 920million years

v 270
ET E s

T
λ λ
⇒ = = = =  

Let us also calculate the pressure : 

(21.101) 223 1.38 23 3 1.2 10V
NkTP n kT E Pa
V

−= = = ⋅ − ⋅ = ⋅  


