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19.1 Temperature as a Measure of an average Kinetic Energy. 
 
When objects at different temperatures are brought into contact heat is exchanged between them. 
They are said to be in thermal contact. Once they are at the “same” temperature they are said to 
be in thermal equilibrium. 
We can only talk about temperature T in a situation with extremely large numbers of molecules 
involved. Every mole of a substance, i.e. the molecular or atomic mass in grams, contains 
Avogadro’s number of molecules or atoms: 

(19.1) 236.022 10A
moleculesN

mole
= ⋅

 
Caution:

23
A

A

n number of moles,  
N  number of molecules,  N Avogadro’s number number of molecules in 1 mole=6.02 10 ,  
N nN

=

= = = ⋅
=

 
These individual molecules have a kinetic energy of translation 

(19.2) 21 v
2

KE m=  

The molecules have an average translational kinetic energy: 
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This average kinetic energy is a direct measure of the temperature T. Usually we write this 
relationship as: 
  

(19.4) 
[ ]

2 -23
B

3 1 v ;  k =1.38 10  Boltzmann constant
2 2

k

B

B

k T m
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K Kelvin
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= =
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If we multiply (19.4) with Avogadro’s number we get the relationship for moles rather than for 
individual molecules.  

(19.5) 

 

2 2

-23 23
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3 1 3 1v = v = 
2 2 2 2

k N =1.38 10 6.02 10  =R universal gas constant
R=8.314 J/mol K =0.08206 atm /mol K

B A A
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L

⋅
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⋅ ⋅ ⋅
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If we take the squareroot of the mean squared velocity we get the so-called rms (root-mean-
squared) speed of the molecule. 
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(19.6) 

2

2
v

v v  for N molecules
i
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Problem: Calculate the rms speed of an oxygen molecule at 20° C. 
 
From this definition it is also obvious that absolute 0.00000…temperature cannot be achieved, as 
that would require absolute 0 kinetic energy and speed. This is not possible as long as 
Heisenberg’s uncertainty relations (quantum physics) are correct, and we believe they are correct 
under all circumstances in our physical universe. 
 

(19.7) 
2

x p∆ ⋅∆ ≥
  

All substances maintain a fundamental vibration consistent with a zero point energy. The 
smallest possible energy of an oscillator is given by (this is a result from quantum-physics, which 
I mention here to give you a more complete picture of the fundamental laws of physics.)  

(19.8) 0 2 2
hfE ω= ≡



 
Quantum physics states that any energy is quantized, and consists of a finite number of multiple 
energy quanta, which, in the case of an oscillator, is equal to ω . 
 

Where  (19.9) 
34( ) 1.05 10 Planck's constant/2

2
hhbar Js π
π

−= = ⋅ =

 
(The horizontal bar symbol means division by 2π.)

 

 
Example: For a spring with spring constant 10.0N/m and an amplitude of oscillation of 10.0 cm, 

we get a total energy of 21 0.0500
2

kA J= With a mass of 0.200kg we get an angular frequency of 

17.07k s
m

−= The fundamental oscillation has an energy of  

   
34 15

19

0.5 7.46 10 4.66 10
1 ( ) 1.6 10

J eV
eV electron Volt J

ω − −

−

= ⋅ = ⋅

= ⋅



 

This is obviously a very small number, but it is not absolute 0. 

19.2,3 Constant-Volume Gas Thermometer. 
Historical Temperature Scales, Kelvin, Fahrenheit, Celsius. The 0 point of the Kelvin scale 
(or the absolute 0 point) can be obtained through extrapolation of the pressure-temperature 
relationship of an ideal gas, whose pressure is measured at the freezing point of water (triple 
point) at 0 degree Celsius and the steampoint of water at 100 degree Celsius. This is done with 
the constant volume gas thermometer. 

(19.10) 
in Kelvin degrees, 

nRPV nRT P T
V

T K K

= ⇒ =

° =
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According to this Ideal Gas Law, pressure in an ideal gas, maintained at constant volume, is 
directly proportional to temperature. 
The slope of the P(T) graph depends on the number n of moles of the gas and its volume. The 
graph passes through P(0)=0 only if you use Kelvin degrees. Otherwise there will be an intercept 
depending on whether you Celsius or Fahrenheit degrees.  If temperatures are measured with gas 
thermometers containing different gases at different initial pressures, the extrapolation of all 
straight lines intercepts the same 0 point of pressure at -273ºC. Obviously, the experiment can 
only be conducted with a very diluted regular gas, and as long as the gas does not turn liquid, or 
solid.  
 
The graph shows several lines for different substances with different slopes, all converging to the 
absolute 0 K temperature point. 

 
Problem: For dry ice (CO2) solidification occurs at -80.00ºC and 0.9000 atm, for ethyl alcohol solidification occurs 
at 78.00ºC and 1.635 atm. These two exactly reproducible points are used as calibration points for the same amount 
of substance at the same volume, i.e. having the same slope m=nR/V. We get the slope of the straight line by 

32 1

2 1

1.635 0.9 4.652 10
78 ( 80)

P P atm atmm
T T C C

−− −
= = = ⋅

− − − ° °
Having the slope we can easily find the intercept value 

0 01.635 (78 ) 1.272m C P P atm= ° + ⇒ = ⇒  

(19.11) 3( ) 4.625 10 1.272atmP T T atm
C

−= ⋅ ⋅ +
°

 

This allows us to find the pressure of these gases at any temperature, and vice versa. Specifically, we find that 0 atm 
pressure is obtained at -273ºC.  
At a 100ºC the gases have a pressure of 7.737atm. 
 
The most common temperature measurements use Cº which are related to the scientific units of 
Kelvin through: 
 

(19.12)                                  F

F

0 point Kelvin =-273.16 Celsius.
9T 32 ;
5

9 5 5 5 160T ; 32
5 9 9 9 9

C

C C F F

T F

T T T C T C

= + °

∆ = ∆ = − ⋅ ° = − °

 

Pressure P 
 

Temperature T in 
Celsius 
 

100ºC 
 
 
 

(0,0) 
 
 
 
 
 
 

-273ºC 
 
 
 
 
 
 

  P=mT+P0 

m=slope 



Dr. Fritz Wilhelm:  Temperature and the Ideal Gas Law                               page 5 of  12 
C:\physics\230 lecture\ch19 temperature ideal gas law.docx; saved 1/25/10 
 

 

The zero point for the Fahrenheit scale is the freezing point for water (triple point, to be more 
exact), set by historical convention at 32 degree Fahrenheit, or 0 degree Celsius. The boiling 
point for water is set at 212 F degree, and 100 Celsius degree. From these definitions it is easy 
to construct the functional relationship between Fahrenheit and Celsius. (Two points define a 
straight line.) Let TF be the y-axis, and TC the x axis: 
 

 
 
 

(19.13) 212 100 932 32
32 0 5

y mx b x x−
= + = + = +

−
 

 

19.4 Thermal Expansion of Solids and Liquids. 
Most solids and liquids expand slightly when the temperature is increased. The relative change in 
one dimension (linear expansion) is (for small temperature changes) directly proportional to the 
change in temperature. The average coefficient of expansion is denoted by α.  

(19.14) 
[ ] 1

i
i

L T L L T
L

C

α α

α

∆
= ∆ ⇒ ∆ = ∆

=
°

 

If you write this as a differential relationship and integrate it you see that the above formula is an 
approximation: 

(19.15) 



( )
integrate

0

0

ln ;  is the constant of integration

L=e ;  initial condition: L T=0T c

T

dL dT L T c c
L

L

L L e
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+
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If you expand the exponential formula using the McLaurin series: 

(19.16) 
2 3

0
1

! 2! 3!

n
x

n

x x xe x
n

∞

=

= = + + + + + +∑  

we get: 

TC 

TF 

(0ºC, 0ºF) 

(0ºC, 32ºF) 

(100ºC, 212ºF)=(x,y) 

(100ºC, 0ºF) 
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(19.17) 
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Remember when we talked about stress and defined Young’s modulus, or the elastic modulus 
through a similar relationship: 

(19.18) 


Fstress=
A i

T

LY Y T
L

α

α

⋅∆

∆
= = ⋅∆ (YCu=11∙E10 N/m2) 

This means that thermal expansion increases the stress inside of materials. 
 
Example: 
Calculate the thermal stress in a copper bar of length 1.000m, if the temperature is increased 
from 0 to 100°C. (1.87E8 Pa) The copper bar expands by 1.7mm. 
 
Note that if you have material with holes in it, the holes expand with the material, as if 
there were no holes in it.  
For example, if you heat a copper ring with inner diameter 5.00 cm from 20 degree to 200 degree 
Celsius, the diameter will increase according to  

(19.19) 

617 10 5.00 180 0.015

0.31%

Cu

iL L T cm C cm
C

L
L

α

α
−⋅

∆ = ∆ = ⋅ ⋅ ° =
°

∆
=



 

For a volume expansion of isotropic materials we want to find the relative expansion knowing 
the expansion in the linear directions. We use what we have learnt about calculating relative 
uncertainties, which is the same mathematics. Here is a little review: The relative change of any 
function is given by the total derivative of the natural log of that function. See the handout 
supplement on uncertainty calculations: 
http://heisingart.com/230/230%20ch19%20supp1%20uncertainty%20calculations.pdf 
 

(19.20) lndf d f
f
=  

 

(19.21) 
( ), ,

, , , ,

f x y z

f f fdf dx dy dz grad f dr dx dy dz
x y z x y z
∂ ∂ ∂ ∂ ∂ ∂

= + + ≡ ⋅ ≡
∂ ∂ ∂ ∂ ∂ ∂





 

 
In cases where the function is a simple polynomial the change of the function is particulary 
simple to calculate by using the logarithmic derivative process of (19.20) 

http://heisingart.com/230/230%20ch19%20supp1%20uncertainty%20calculations.pdf�
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(19.22) 
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Now, let us apply this to the volume expansion. Assume that we have homogeneous material 
which expands in all directions in the same way with α. 

(19.23) 

;

for isotropic material

3

dV dx dy dzV xyz
V x y z

dx dy dz T
x y z

dV T
V
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α
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= = = ∆ ⇒

= ∆

 

 
19.4a Anomaly of water with respect to expansion with temperature: 
Water expands with temperature above 4º C, but it contracts below 4º Celsius. To put it 
differently, the density of water increases from 0 to 4.0ºC, and it decreases above 4ºC. It has a 
maximum for the density/temperature curve at 4ºC 

(19.24) 
3

3

( 4.0 C) 1.000

( 4.0 C) < 1.000

gT
cm

gT
cm

ρ

ρ

= ° =

≠ °
 

This means that water at 1º Celsius has a lesser density than water at 5º Celsius. It will therefore 
move to the top of a lake. (The buoyant force is larger than its weight.) With further cooling it 
will turn into ice which has an even smaller density. Therefore ice will form at the top of a lake 
and not at the bottom, which would be the case if water at 1ºCelsius had a greater density than 
water at 4º C. 
 
19.5 Macroscopic Description of an Ideal Gas. 
The molar mass of each chemical element is the atomic mass, expressed in grams per mole. The 
same definition is applied to molecules. Thus, the atomic mass of water would be 18, and its 
molar mass would be 18 grams. Every mole, or 18 grams, of water (vapor, ice, or liquid) 
contains Avogadro’s number NA of molecules. 
The density of water depends on its state (liquid, vapor, solid), its temperature, and the pressure 
it is under. The relationship expressing this is called the equation of state, which, for water is 
very complicated. The same relationship is relatively simple for an idealized gas, in which the 
gas particles have no chemical or other interactions with their neighbors. The ideal gases like 
Helium, Radon, Argon come close to this, so do Hydrogen and Oxygen molecules over some 
range of temperature and at low densities. We use the ideal gas law to illustrate and 
approximately calculate many of the thermodynamic quantities of gases. 
The equation of state for an ideal gas is given by: 
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(19.25) 
[ ] ( ) 13 5 3

3

 for n moles; R=universal gas constant
8.314 JR = ; [ ] [ ] [ ] 1 1 1 1.013 10 10
mol K

R=8.314 J=8.314 9.8717 10 0.08207

PV nRT

E P V J Pa m atm L

L atm L atm

−

−

=

= ⇒ = ⋅ = ⋅ ⋅
⋅

⋅ ⋅ ⋅ = ⋅



 

 
P is pressure in Pascals, V is volume in m3 or in atmospheres and liters.(1atm=1.013E5Pa) Note 
that the product of volume and pressure has the dimension of energy, Joules.  
 
In order to obtain the gas law for N particles, rather than n moles, we have to make use of the 
fact, that the number of moles is equal to the number of particles N, divided by Avogadro’s 
number NA 

(19.26) 23 16.02 10AN mol−= ⋅  
Also, the universal gas constant for a single atom is given by Boltzmann’s constant kB. 

(19.27)  and A B
A

Nn R N k
N

= = ⋅  

(19.28) A B B
A

NPV nRT N k T Nk T
N

= = ⋅ =
 

Note that in this equation, N stands for total number of individual particles, not moles. 
 

(19.29) 
231.38 10  Boltzmann's constantB

A

R Jk
N K

−≡ = ⋅  

 
Pressure P, volume V, temperature T (and number of molecules) are the typical 
thermodynamic variables, very much like x, y, z in mechanics. The major thermodynamic 
functions like heat Q(P,V,T), internal energy U, entropy S can all be expressed in terms of such 
variables. These functions are all scalar functions. Pressure, volume, and temperature can be 
functions of space and time coordinates. 
 
As we are always dealing with very large numbers of particles, we need to ultimately employ 
statistical models.   
 
Problem: 
Calculate the average pressure of outer space (universe) where we have typically about four 
protons per m3 at a temperature of 1K.  
 
Solution: 23 234 1.38 10 1 5 10BPV nRT Nk T P Pa− −= = ⇒ = ⋅ ⋅ ⋅ ≈ ⋅   
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--------------------------------------------------------------------------------------------------------------- 
19.5a Van der Waals equation: 
The behavior of real gases requires a modification of the ideal gas law. Experiment and theory 
confirm that we need to add an additional pressure term, and an additional volume term. This 
equation allows among other things to understand the liquification of gases when the pressure is 
increased and the temperature decreased. (See chapter 22.) 

(19.30)

( ) ( )

[ ]

2

2

2
2 6

 is an internal pressure deriving from the attraction of the molecules to each-other

b is the volume occupied by a single finite mole of particles

mol
mol

mol

mol

aP V b RT
V

a
V

aa pa mol
V m

 
 + − =
 
 

 
= = ⇒ 

 
[ ]

[ ]

6

2

3

pa ma
mol

mb
mol

⋅
=

=

 

For example: for carbondioxide we have a=.36 pa ∙m6/mol2, and b=4.3∙10-5m3/mol 
--------------------------------------------------------------------------------------------------------------- 
We can use formula (19.25) to determine the density ρ of a gas at a particular pressure and 
temperature: 

(19.31) number density;

; mass of individual particle;M=total mass in the volume V.

B B V B

V

V

NPV Nk T P k T n k T
V

Nn
V

N Mn m m m
V V

ρ

= ⇒ = =

= =

= ⋅ = = =  

 
The number density nV is related to the conventional mass density ρ by: 

(19.32) number of atoms mass of one atom
volumeVn mρ = ⋅ = ⋅  

By using the mass density we get in (19.31): 

(19.33) V B B
mol

P n k T k T RT
m M
ρ ρ

= = =  

Solving for the density, we get: 

(19.34) mol

B

M mP P
RT k T

ρ = =
 

 
Problem: Find the density of air at 0 degree Celsius and atmospheric pressure: 
Air consists to 80% of nitrogen and 20% of oxygen. This gives us the molar mass of air at 0° C as: 
(19.35) 0.80 28 0.20 32 29airM g g g= ⋅ + ⋅ =  
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(19.36) 
( ) 3

1 29 / 1.29 1.29
273 0.082 /air

atm g mole g kg
C atm L K mole L m

ρ ⋅
= = =

°⋅ ⋅ ⋅
 

 
19.5b Barometric Formula. 
Problem: How does the pressure in air vary with height? Assume that air behaves like an ideal 
gas.  
We know that the pressure in any liquid changes according to: 
(19.37) 0P P gy dP gdyρ ρ= − ⇒ = −  
In this formula we choose the 0 pressure point at the bottom of the liquid. Therefore the pressure 
decreases with increasing values for y. 
 
From (19.34) we see that at constant temperature T, pressure P is proportional to the 
density ρ: 

(19.38) molecule

B

Pm
k T

ρ =  

With this substitution for ρ in (19.37) we get from dP gdyρ= −  
(19.39)  

(19.40) 0
ln constantPmolecule

P
B B B

P m dP mg mgdP gdy dy P y
k T P k T k T
⋅ − −

= − ⇒ = ⇒ = +
 

 

(19.41) 0 0

molecule mol
B

m g M gy yk T RTP P e P e
− −

= =  
 
 
Both pressure and density decrease exponentially with the potential energy like  

(19.42) 
potential energy of one molecule potential energy  

Bk T RTe e
− −

=  

The ratios A molecule mole

A B

N m M
N k R

=  obviously being equal. 

Therefore, we can also write: 

(19.43)  ( ) 0 0

molecule mol
B

m g M gy yk T RTy e eρ ρ ρ
− −

= =   
We will see later that, in general, the probability to find a molecule in a particular energy E 
state is proportional to: 

(19.44) 
B

E
k Te

−

 
 
E is the total of all energies, potential and kinetic of the molecules. 
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Problem: At what height will the pressure of  nitrogen gas drop to 80% of the original pressure, 0ºC. 

(19.45) 

20.028 9.8

8.314 273
0 0 0 00.8

0.028 9.8 0.223ln 0.8 1850
8.314 273 1.2 4

molecule mol
B

mkgm g M g sy yyk T JRTP P e P e P e

y y m
E

⋅
− −−

⋅= = =
⋅

= − ⇒ = =
⋅ −

 

 
 
Problem: 
A hot air balloon consists of a balloon with volume 
of 5000 m3. The ballast, i.e. everything of the system 
with the exception of the air inside the balloon, has a 
mass of 2500kg. The surrounding air is at a 
temperature of 0ºC. To which temperature does the 
air inside of the balloon have to be raised for the 
balloon to take off? 
This is a buoyancy problem and an ideal gas 
problem. 
 
 
Let us call the mass of air in the balloon m1 and the  
remaining mass of the baloon and the equipment m2.  
 
The weight of the displaced cold air with 
density ρ2 must be equal to the weight of 
the hot air plus the additional weight 
m2g.When the air inside of the balloon is 
heated, its density and weight decrease. 
 
(19.46) 1 1m g Vgρ=  
 
The buoyancy of the hot air, which is 
equal to the weight of the displaced cold 

air will lift the balloon: 
 
(19.47)

  

2 1 2
buoyancy= weight of the hot remaining weight
weight of displaced air in the balloon
cold air

Vg Vg m gρ ρ= +  

 
 
We need to figure out how the density varies with temperature and assume that air behaves 
like an ideal gas. 

Formula (19.34) molecule mol

B

Pm PM
k T RT

ρ = = is applicable.  

In our problem pressure is constant (the balloon is open to the outside air), so, the density 
varies inversely with the temperature. The ratio between the densities at hot and cold 
temperatures is therefore: (the constants cancel) 

air at Tcold and 
pressure P; 
density ρ2 
mass of displaced 
cold air:  
m2=ρ2V 
 
 

hot air at Thot and 
pressure P 
mass of hot air =m1= 
ρ1V 
 
 
 
 
 
 mass of balloon 

+equipment = m2 

 
 
 
 
 



Dr. Fritz Wilhelm:  Temperature and the Ideal Gas Law                               page 12 of  12 
C:\physics\230 lecture\ch19 temperature ideal gas law.docx; saved 1/25/10 
 

 

(19.48) 1
1 2

2

hot cold cold
hot cold

cold hot hot

T T
T T

ρ ρ ρ
ρ

= ⇒ =
 

 
Inserting the density of hot air ρ1hot in equation (19.47) we get: 
 
 

(19.49) 

( )

3
2 1 2 2 2 2

2 2 2 2 2 2

2
2 2 2

2 2

; 1.29 /

446 173

cold
cold

hot

cold
hot cold hot

hot

cold
hot cold hot

TVg Vg m g Vg m g kg m
T

TV V m VT T V m T
T

T VT V m T V T K C
V m

ρ ρ ρ ρ

ρ ρ ρ ρ

ρρ ρ
ρ

= + = + =

= + ⇒ = +

− = ⇒ = = ° = °
−
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