This homework is due once we have discussed uncertainty calculations in a lecture or lab.

1. The proton has a mass of $1.673 \mathrm{E}-27 \mathrm{~kg}$, and a radius of $1.0 \mathrm{E}-15 \mathrm{~m}$. Calculate its volume and density with the correct number of significant figures. Answer: $\mathrm{V}=4.2 \mathrm{E}-45 \mathrm{~m}^{3} ; \rho=4.0 \mathrm{E} 17 \mathrm{~kg} / \mathrm{m}^{3}$. (Note: $\mathbf{E} 17$ is the same as $\mathbf{1 0}{ }^{\mathbf{1 7}}$)
2. Newton's law of universal gravitational attraction has the form $F=\frac{G m_{1} m_{2}}{r^{2}}$ where the masses are given in kg, the distance r in m , and the force itself in Newtons N. Express the units of the universal gravitational constant G in terms of the given units. We put unit calculations in square brackets.
Answer: $[\mathrm{G}]=\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}$
3. There are nearly $\pi \cdot 10^{7}$ seconds in one year. Calculate the percent error in this approximation, where we define percent error as

$$
\frac{\mid \text { assumed or measured value - correct or accepted value| }}{\text { correct or accepted value }} \cdot 100 \%
$$

Answer: 0.45\%
If we use lyear $=365.25$ days $=3.15576 \mathrm{E} 7$ seconds we get: The absolute error in 1 year corresponds to at most 0.005 days $=432$ seconds. The relative error is $1 \mathrm{E}-5=0.001 \%$.
4. The density of a solid cylinder has been measured as follows: radius $=1.956 \mathrm{~cm}$, height $=10.4 \mathrm{~cm}$, mass $=865.45$ grams .
Calculate the density of this cylinder, its relative and its absolute uncertainty. Pay attention to the correct number of significant figures in your answers. (Consult the paper on uncertainty! ch 0 uncertainty calculations.pdf) posted on website: answer $\rho=6.92 \mathrm{~g} / \mathrm{cm}^{3} ; \Delta \rho=0.04 \mathrm{~g} / \mathrm{cm}^{3} ; \Delta \rho / \rho=0.5 \%$ www.heisingart.com/120.htm
5. Unit conversions: How many meters are in 12.3 miles: 1.98 E 4 m
6. If the radius of the earth is 6.37 E 3 km and the distance to the Sun is 1.5 E 11 m , how many meters do you travel with respect to the Sun, in 1.0 year?:
$2 \pi R \cdot 1$ year $+2 \pi r_{e} \cdot 24$ hours $\cdot 365=2.977 \cdot 10^{19}+1.26 \cdot 10^{15}=3.0 \cdot 10^{19} \mathrm{~m}$
7. What is 25.00 mph in $\mathrm{m} / \mathrm{s}: 11.18 \mathrm{~m} / \mathrm{s}$
8. How many seconds are in 1 year (365.25 days): 3.1558 E 7 s .
9. If the speed of light $\mathrm{c}=3.00 \mathrm{E} 8 \mathrm{~m} / \mathrm{s}$ find the distance corresponding to 1 lightyear, the distance light travels in 1 year. 9.47 E 15 m

